Elucidating the intrinsic relationship between diseases and Golgi apparatus polarity remains a great challenge owing to the lack of the Golgi-specific fluorescent probe for polarity. Until now, the visualization of abnormal Golgi apparatus polarity in clinical cancer patient samples has not been achieved. To meet this urgent challenge, we facilely synthesized a robust Golgi-targeting and polarity-specific fluorescent probe (GCSP), which consists of an electron-acceptor solvatochromic coumarin 343 and an electron-donor Golgi-targeting group phenylsulfonamide. Owing to the typical D-π-A molecular configuration with unique intramolecular charge transfer effect, GCSP exhibits high sensitivity to polarity change in different solvents. Moreover, we revealed that GCSP possessed a satisfactory ability to sensitively monitor Golgi apparatus polarity changes in living cells. Using GCSP, we have successfully shown that Golgi apparatus polarity may serve as an ubiquitous marker for cancer and fatty liver detection. Surprisingly, the visualization of Golgi polarity has been achieved not only at the cellular levels, but also in clinical tissue samples from cancer patients, thus holding great potential in the clinical diagnosis of human cancer. All these features render GCSP an effective tool for the accurate diagnosis of Golgi apparatus related diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.125367 | DOI Listing |
Plant Physiol
January 2025
State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China, P. R.
Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Program in Molecular Medicine, University of Massachusetts Chan Medical School, Suite 213 Biotech II, 373 Plantation Street, Worcester MA 01605, USA.
In humans, inositol polyphosphate-5-phosphatase e (INPP5E) mutations cause retinal degeneration as part of Joubert and MORM syndromes and can also cause non-syndromic blindness. In mice, mutations cause a spectrum of brain, kidney, and other anomalies and prevent the formation of photoreceptor outer segments. To further explore the function of Inpp5e in photoreceptors, we generated conditional and inducible knockouts of mouse Inpp5e where the gene was deleted either during outer segment formation or after outer segments were fully formed.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.
Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
The brain presents various structural and functional sex differences, for which multiple factors are attributed: genetic, epigenetic, metabolic, and hormonal. While biological sex is determined by both sex chromosomes and sex hormones, little is known about how these two factors interact to establish this dimorphism. Sex differences in the brain also affect its resident immune cells, microglia, which actively survey the brain parenchyma and interact with sex hormones throughout life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!