Tracking Native Ribozyme Folding with Fluorescence.

Biochemistry

Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States.

Published: November 2023

Folding of the group I intron ribozyme and other structured RNAs has been measured using a catalytic activity assay to monitor the native state formation by cleavage of a radiolabeled oligonucleotide substrate. While highly effective, the assay has inherent limitations present in any radioactivity- and gel-based assay. Administrative and safety considerations arise from the radioisotope, and data collection is laborious due to the use of polyacrylamide gels. Here we describe a fluorescence-based, solution assay that allows for more efficient data acquisition. The substrate is labeled with 6-carboxyfluorescein (6FAM) fluorophore and black hole quencher (BHQ1) at the 5' and 3' ends, respectively. Substrate cleavage results in release of the quencher, increasing the fluorescence signal by an average of 30-fold. A side-by-side comparison with the radioactivity-based assay shows good agreement in monitoring ribozyme folding from a misfolded conformation to the native state, albeit with increased uncertainty. The lower precision of the fluorescence assay is compensated for by the relative ease and efficiency of the workflow. In addition, this assay will allow institutions that do not use radioactive materials to monitor native folding of the ribozyme, and the same strategy should be amenable to native folding of other ribozymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666665PMC
http://dx.doi.org/10.1021/acs.biochem.3c00363DOI Listing

Publication Analysis

Top Keywords

ribozyme folding
8
monitor native
8
native state
8
native folding
8
assay
7
folding
5
tracking native
4
ribozyme
4
native ribozyme
4
folding fluorescence
4

Similar Publications

Ribozymes that catalyze site-specific RNA modification have recently gained increasing interest for their ability to mimic methyltransferase enzymes and for their application to install molecular tags. Recently, we reported SAMURI as a site-specific alkyltransferase ribozyme using S-adenosylmethionine (SAM) or a stabilized analog to transfer a methyl or propargyl group to N of an adenosine. Here, we report the crystal structures of SAMURI in the postcatalytic state.

View Article and Find Full Text PDF

Activation of caged functional RNAs by an oxidative transformation.

Chembiochem

December 2024

University of Minnesota, Department of Genetics, Cell Biology, and Development, MCB 5-130, 420 Washington Avenue SE, 55455, Minneapolis, UNITED STATES OF AMERICA.

RNA exhibits remarkable capacity as a functional polymer, with broader catalytic and ligand-binding capability than previously thought. Despite this, the low side chain diversity present in nucleic acids (two purines and two pyrimidines) relative to proteins (20+ side chains of varied charge, polarity, and chemical functionality) limits the capacity of functional RNAs to act as environmentally responsive polymers, as is possible for peptide-based receptors and catalysts. Here we show that incorporation of the modified nucleobase 2-thiouridine (2sU) into functional (aptamer and ribozyme) RNAs produces functionally inactivated polymers that can be activated by oxidative treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Molecular dynamics simulations are essential for understanding the behavior of biomolecules but often face challenges due to discrepancies in time scales compared to real-world experiments, prompting the development of enhanced methods.
  • This study utilizes advanced techniques like oscillating chemical potential grand canonical Monte Carlo and machine learning to investigate how electronic polarizability and Mg2+ distribution influence the stability of the twister ribozyme.
  • The findings highlight that incorporating electronic polarizability significantly improves simulation stability compared to traditional methods, revealing critical interactions between Mg2+ ions and RNA components that contribute to this stabilization.
View Article and Find Full Text PDF

An RNA's catalytic, regulatory, or coding potential depends on RNA structure formation. Because base pairing occurs during transcription, early structural states can govern RNA processing events and dictate the formation of functional conformations. These co-transcriptional states remain unknown.

View Article and Find Full Text PDF

L-Histidine Modulates the Catalytic Activity and Conformational Changes of the HD3 Deoxyribozyme.

Genes (Basel)

November 2024

Konan Laboratory for Oligonucleotide Therapeutics (KOLOT), 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan.

: Riboswitches are functional nucleic acids that regulate biological processes by interacting with small molecules, such as metabolites, influencing gene expression. Artificial functional nucleic acids, including deoxyribozymes, have been developed through in vitro selection for various catalytic functions. In a previous study, an l-histidine-dependent deoxyribozyme was identified, exhibiting RNA cleavage activity in the presence of l-histidine resembling ribonuclease catalytic mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!