Dinosaur foraging ecology has been the subject of scientific interest for decades, yet much of what we understand about it remains hypothetical. We wrote an agent-based model (ABM) to simulate meat energy sources present in dinosaur environments, including carcasses of giant sauropods, along with living, huntable prey. Theropod dinosaurs modeled in this environment (specifically allosauroids, and more particularly, Allosaurus Marsh, 1877) were instantiated with heritable traits favorable to either hunting success or scavenging success. If hunter phenotypes were more reproductively successful, their traits were propagated into the population through their offspring, resulting in predator specialists. If selective pressure favored scavenger phenotypes, the population would evolve to acquire most of their calories from carrion. Data generated from this model strongly suggest that theropods in sauropod-dominated systems evolved to detect carcasses, consume and store large quantities of fat, and dominate carcass sites. Broadly speaking, selective forces did not favor predatory adaptations, because sauropod carrion resource pools, as we modeled them, were too profitable for prey-based resource pools to be significant. This is the first research to test selective pressure patterns in dinosaurs, and the first to estimate theropod mass based on metabolic constraints.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619836 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290459 | PLOS |
Sci Rep
January 2025
Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Bucharest, Romania.
As conservation agricultural practices continue to spread, there is a need to understand how reduced tillage impacts soil microbes. Effects of no till (NT) and disk till (DT) relative to moldboard plow (MP) were investigated in a long-term experiment established on Chernozem. Results showed that conservation practices, especially NT, increased total, active and microbial biomass carbon.
View Article and Find Full Text PDFSci Rep
January 2025
Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK.
Understanding the spatial ecology of commercially exploited species is vital for their conservation. Atlantic bluefin tuna (Thunnus thynnus, ABT) are increasingly observed in northeast Atlantic waters, yet knowledge of these individuals' spatial ecology remains limited. We investigate the horizontal and vertical habitat use of ABT (158 to 241 cm curved fork length; CFL) tracked from waters off the United Kingdom (UK) using pop-up satellite archival tags (n = 63).
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Forestry and Rangeland Stewardship, Colorado State University, Fort Collins, CO, United States.
Land stewards in dryland ecosystems across the western U.S. face challenges to manage the exotic grass (cheatgrass), which is a poor forage, is difficult to remove, and increases risk of catastrophic fire.
View Article and Find Full Text PDFMol Plant
December 2024
College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Medicago, a member of the Leguminosae or Fabaceae family, encompasses the most significant forage crops globally, notably alfalfa (Medicago sativa L.). Its close diploid relative, Medicago truncatula, serves as an exemplary model plant for investigating leguminous growth and development, as well as its symbiosis with rhizobia.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Applied Biology, Miguel Hernández University of Elche, Elche, Spain; Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Orihuela, Spain.
Offshore wind energy is experiencing accelerated growth worldwide to support global net zero ambitions. To ensure responsible development and to protect the natural environment, it is essential to understand and mitigate the potential impacts on wildlife, particularly on seabirds and marine mammals. However, fully understanding the effects of offshore wind energy production requires characterising its global geographic occurrence and its potential overlap with marine species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!