Many forces influence genetic variation across the genome including mutation, recombination, selection, and demography. Increased mutation and recombination both lead to increases in genetic diversity in a region-specific manner, while complex demographic patterns shape patterns of diversity on a more global scale. While these processes act across the entire genome, the X chromosome is particularly interesting because it contains several distinct regions that are subject to different combinations and strengths of these forces: the pseudoautosomal regions (PARs) and the X-transposed region (XTR). The X chromosome thus can serve as a unique model for studying how genetic and demographic forces act in different contexts to shape patterns of observed variation. We therefore sought to explore diversity, divergence, and linkage disequilibrium in each region of the X chromosome using genomic data from 26 human populations. Across populations, we find that both diversity and substitution rate are consistently elevated in PAR1 and the XTR compared to the rest of the X chromosome. In contrast, linkage disequilibrium is lowest in PAR1, consistent with the high recombination rate in this region, and highest in the region of the X chromosome that does not recombine in males. However, linkage disequilibrium in the XTR is intermediate between PAR1 and the autosomes, and much lower than the non-recombining X. Finally, in addition to these global patterns, we also observed variation in ratios of X versus autosomal diversity consistent with population-specific evolutionary history as well. While our results were generally consistent with previous work, two unexpected observations emerged. First, our results suggest that the XTR does not behave like the rest of the recombining X and may need to be evaluated separately in future studies. Second, the different regions of the X chromosome appear to exhibit unique patterns of linked selection across different human populations. Together, our results highlight profound regional differences across the X chromosome, simultaneously making it an ideal system for exploring the action of evolutionary forces as well as necessitating its careful consideration and treatment in genomic analyses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619814 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287609 | PLOS |
J Cell Mol Med
January 2025
Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
This study aims to elucidate the potential genetic commonalities between metabolic syndrome (MetS) and rheumatic diseases through a disease interactome network, according to publicly available large-scale genome-wide association studies (GWAS). The analysis included linkage disequilibrium score regression analysis, cross trait meta-analysis and colocalisation analysis to identify common genetic overlap. Using modular partitioning, the network-based association between the two disease proteins in the protein-protein interaction set was divided and quantified.
View Article and Find Full Text PDFJ Neurochem
January 2025
NHC Key Laboratory of Cell Transplantation, Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
Hemorrhagic stroke (HS) mainly includes intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH), both of which seriously affect the patient's prognosis. Cerebrospinal fluid (CSF) metabolites and HS showed a link in observational studies. However, the causal association between them is not clear.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
July 2024
Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha 410013.
Objectives: Genetic factors play an important role in the pathogenesis of diabetic kidney disease (DKD). Studies have shown that gene polymorphism is associated with the pathogenesis of type 2 diabetes mellitus (T2DM), but its role in DKD remains unclear. This study aims to analyze the distribution of alleles and genotypes of gene in patients with T2DM, and investigate the association between genetic polymorphism and DKD susceptibility in T2DM patients, which may provide new ideas for the pathogenesis of DKD.
View Article and Find Full Text PDFNeurology
February 2025
Department of Integrated Traditional Chinese and Western Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China.
Background And Objectives: Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme that regulates folate and homocysteine metabolism. Genetic variation in has been implicated in cerebrovascular disease risk, although research in diverse populations is lacking. We thus aimed to investigate the effect of genetically predicted MTHFR activity on risk of ischemic stroke (IS) and its main subtypes using a multiancestry Mendelian randomization (MR) approach.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Department of Otolaryngology & Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, Hubei, China.
Purpose: Previous researches have suggested an important association between gut microbiota (GM) and vascular pathologies such as atherosclerosis. This study aimed to explore the association between 196 GM taxa and retinal vein occlusion (RVO).
Methods: This study used Mendelian randomization (MR), linkage disequilibrium score regression (LDSC), and polygenic overlap analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!