A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Topological Transitions and Surface Umklapp Scattering in Weakly Modulated Periodic Metasurfaces. | LitMetric

Topological Transitions and Surface Umklapp Scattering in Weakly Modulated Periodic Metasurfaces.

Nano Lett

The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Haifa, Israel 3200003.

Published: November 2023

Controlling and manipulating surface waves is highly beneficial for imaging applications, nanophotonic device design, and light-matter interactions. While deep-subwavelength structuring of the metal-dielectric interface can influence surface waves by forming strong effective anisotropy, it disregards important structural degrees of freedom such as the interplay between corrugation periodicity and depth and its effect on the beam transport. Here, we unlock these degrees of freedom, introducing weakly modulated metasurfaces, structured metal-dielectric surfaces beyond effective medium. We utilize groove-structuring with varying depths and periodicities to demonstrate control over the transport of surface waves, dominated by the depth-period interplay. We show unique backward focusing of surface waves driven by an umklapp process-momentum relaxation empowered by the periodic nature of the structure and discover a yet unexplored, dual-stage topological transition. Our findings can be applied to any type of guided wave, introducing a simple and versatile approach for controlling wave propagation in artificial media.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c02759DOI Listing

Publication Analysis

Top Keywords

surface waves
16
weakly modulated
8
degrees freedom
8
surface
5
topological transitions
4
transitions surface
4
surface umklapp
4
umklapp scattering
4
scattering weakly
4
modulated periodic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!