Ultrafast Nanoimaging of Spin-Mediated Shear Waves in an Acoustic Cavity.

Nano Lett

X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.

Published: November 2023

Strong spin-lattice coupling in van der Waals (vdW) magnets shows potential for innovative magneto-mechanical applications. Here, nanoscale and picosecond imaging by ultrafast electron microscopy reveal heterogeneous spin-mediated coherent acoustic phonon dynamics in a thin-film cavity of the vdW antiferromagnet FePS. The harmonics of the interlayer shear acoustic modes are observed, in which the even and odd harmonics exhibit distinct nanoscopic dynamics. Corroborated by acoustic wave simulation, the role of defects in forming even harmonics is elucidated. Above the Néel temperature (), the interlayer shear acoustic harmonics are suppressed, while the in-plane traveling wave is predominantly excited. The dominant acoustic dynamics shifts from the out-of-plane shear to the in-plane traveling wave across , demonstrating that magnetic properties can influence phonon scattering pathways. The spatiotemporally resolved structural characterization provides valuable nanoscopic insights for interlayer-shear-mode-based acoustic cavities, opening up possibilities for magneto-mechanical applications of vdW magnets.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c02747DOI Listing

Publication Analysis

Top Keywords

vdw magnets
8
magneto-mechanical applications
8
interlayer shear
8
shear acoustic
8
in-plane traveling
8
traveling wave
8
acoustic
7
ultrafast nanoimaging
4
nanoimaging spin-mediated
4
shear
4

Similar Publications

Efficient magnetization control is a central issue in magnetism and spintronics. Particularly, there are increasing demands for manipulation of magnetic states in van der Waals (vdW) magnets with unconventional functionalities. However, the electrically induced phase transition between ferromagnetic-to-antiferromagnetic states without external magnetic field is yet to be demonstrated.

View Article and Find Full Text PDF

Ultrathin Rare-Earth Oxyhalides as High-κ van der Waals Layered Dielectrics.

Adv Mater

January 2025

Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China.

Van der Waals (vdW) dielectrics are extensively employed to enhance the performance of 2D electronic devices. However, current vdW dielectric materials still encounter challenges such as low dielectric constant (κ) and difficulties in synthesizing high-quality single crystals. 2D rare-earth oxyhalides (REOXs) with exceptional electrical properties present an opportunity for the exploration of novel high-κ dielectrics.

View Article and Find Full Text PDF

Experimental detection of antiferromagnetic order in two-dimensional materials is a challenging task. Identifying multidomain antiferromagnetic textures via the current techniques is even more difficult. Therefore, we investigate the higher-order multipole moments in twisted bilayer MnPSe.

View Article and Find Full Text PDF

Atomically thin van der Waals (vdW) films provide a material platform for the epitaxial growth of quantum heterostructures. However, unlike the remote epitaxial growth of three-dimensional bulk crystals, the growth of two-dimensional material heterostructures across atomic layers has been limited due to the weak vdW interaction. Here we report the double-sided epitaxy of vdW layered materials through atomic membranes.

View Article and Find Full Text PDF

Abnormal chirality in antiferromagnetic resonance modes of van der Waals 2D magnets.

Sci Rep

January 2025

School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.

Two-dimensional van der Waals (2D vdW) materials have attracted widespread research interest due to their unique physical properties and potential application prospects. In this study, an atomistic-level dynamical simulation method is employed to investigate the chirality of antiferromagnetic resonance modes in CrI bilayer. Beyond the typical observations of a linear increase in high-frequency resonance mode and a linear decrease in low-frequency resonance mode, we have identified a distinct magnetization precession chirality in the CrI bilayer at low magnetic fields: Spins in different layers exhibit opposite precession chirality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!