Tetrastigma hemsleyanum Diels et Gilg, a traditional Chinese medicine, frequently suffers from cold damage in the winter, leading to lower yields. There is a pressing need to improve cold resistance; however, the mechanisms underlying T. hemsleyanum responses to cold stress are still not clearly understood. Here, we explored the function of the flavanone 3-hydroxylase gene (ThF3H) in T. hemsleyanum under cold treatment. The open reading frame of ThF3H is 1092 bp and encodes 363 amino acid residues. In vitro, the ThF3H enzyme was expressed in E. coli and successfully catalyzed naringenin and eriodictyol into dihydrokaempferol and dihydroquercetin, respectively. ThF3H exhibited a higher affinity for naringenin than for eriodictyol, which was in accordance with an in silico molecular docking analysis. The optimal pH and temperature for ThF3H activity were 7.0 and 30 °C, respectively. In vivo, overexpression of the ThF3H gene enhanced the cold tolerance of transgenic Arabidopsis lines, which was likely due to the increase in flavonoids. Collectively, the function of a cold-related ThF3H in the flavonoid biosynthesis pathway may be helpful for improving the cold tolerance of T. hemsleyanum through molecular breeding techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-023-03440-5DOI Listing

Publication Analysis

Top Keywords

flavanone 3-hydroxylase
8
tetrastigma hemsleyanum
8
naringenin eriodictyol
8
cold tolerance
8
cold
7
thf3h
7
hemsleyanum
5
functional characterization
4
characterization cold
4
cold flavanone
4

Similar Publications

Callus browning is a significant problem that hinders plant tissue regeneration "Fengdan" by causing cell death and inhibiting growth. However, the molecular mechanism underlying callus browning in remains unclear. In this study, we investigated the metabolites and potential regulatory genes involved in callus browning of using metabolomic and transcriptomic analyses.

View Article and Find Full Text PDF

Pepper Phytophthora blight caused by results in substantial losses in global pepper cultivation. The use of biocontrol agents with the dual functions of disease suppression and crop growth promotion is a green and sustainable way of managing this pathogen. In this study, six biocontrol strains of with high antagonistic activity against were isolated and screened from the rhizosphere soil of healthy peppers undergoing long-term continuous cultivation.

View Article and Find Full Text PDF

Integrative Omics Analysis Reveals Mechanisms of Anthocyanin Biosynthesis in Djulis Spikes.

Plants (Basel)

January 2025

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.

Djulis ( Koidz.), a member of the family plant, is noted for its vibrant appearance and significant ornamental value. However, the mechanisms underlying color variation in its spikes remain unexplored.

View Article and Find Full Text PDF

The application of plant growth regulators is an effective method to enhance flavonoid content in certain fruits; however, there is limited research comparing the effects of different plant growth regulators. This study evaluated the impact of pre-harvest application with melatonin, 24-epibrassinolide, and methyl jasmonate on flavonoid content in blueberry fruit. All three plant growth regulators increased the total polyphenol content, total flavonoid content, antioxidant capacities, and the activities of key enzymes involved in flavonoid biosynthesis, including flavone synthase, flavanone 3-hydroxylase, flavonol synthase, anthocyanidin synthase, and leucoanthocyanidin reductase.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on how poplar adventitious roots (ARs) change color due to interaction with fungal canker pathogens, revealing the mechanisms behind pigment production and metabolomic changes.
  • An increase in the synthesis of pigments, especially cyanidin-3-O-glucoside, was observed, along with the discovery that sunlight exposure alters metabolic pathways related to flavonoid synthesis in these roots.
  • Key genes involved in the coloration and biosynthesis were found to be upregulated or downregulated depending on light conditions, indicating a complex response of poplar trees to pathogen infection and environmental factors.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!