Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electrochemical Li-alloying reactions with Li-rich alloy phases render a much higher theoretical capacity that is critical for high-energy batteries, and the accompanying phase transition determines the alloying/dealloying reversibility and cycling stability. However, the influence of phase-transition characteristics upon the thermodynamic properties and diffusion kinetic mechanisms among the two categories of alloys, solid-solutions and intermetallic compounds, remains incomplete. Here we investigated three representative Li-alloys: Li-Ag alloy of extended solid-solution regions; Li-Zn alloy of an intermetallic compound with a solid-solution phase of a very narrow window in Li atom concentration; and Li-Al alloy of an intermetallic compound. Solid-solution phases undertake a much lower phase-transition energy barrier than the intermetallic compounds, leading to a considerably higher Li-alloying/dealloying reversibility and cycling stability, which is due to the subtle structural change and chemical potential gradient built up inside of the solid-solution phases. These two effects enable the Li atoms to enter the bulk of the Li-Ag alloy to form a homogeneous alloy phase. The pouch cell of the Li-rich LiAg alloy pairs with a LiNiCoMnO cathode under an areal capacity of 3.5 mAh cm can retain 87% of its initial capacity after 250 cycles with an enhanced Coulombic efficiency of 99.8 ± 0.1%. While Li-alloying reactions and the alloy phase transitions have always been tightly linked in past studies, our findings provide important guidelines for the intelligent design of components for secondary metal batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c08711 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!