Deciphering the physical mechanisms underlying cell shape changes, while avoiding the cellular interior's complexity, involves the development of controlled basic biomimetic systems that imitate cell functions. In particular, the reconstruction of cytoskeletal dynamics on cell-sized giant unilamellar vesicles (GUVs) has allowed for the reconstituting of some cell-like processes . In fact, such a bottom-up strategy could be the basis for forming protocells able to reorganize or even move autonomously. However, reconstituting the subtle and controlled dynamics of the cytoskeleton-membrane interface remains an experimental challenge. Taking advantage of the lipid-induced segregation of an actin polymerization activator, we present a system that targets actin polymerization in specific domains of phase-separated GUVs. We observe actin networks localized on Lo, Ld, or on both types of domains and the actin-induced deformation or reorganization of these domains. These results suggest that the system we have developed here could pave the way for future experiments further detailing the interplay between actin dynamics and membrane heterogeneities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.3c00268 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!