Roles of multi-level temperature-adaptive responses and microhabitat variation in establishing distributions of intertidal species.

J Exp Biol

Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao 266001, China.

Published: November 2023

How intertidal species survive their harsh environment and how best to evaluate and forecast range shifts in species distribution are two important and closely related questions for intertidal ecologists and global change biologists. Adaptive variation in responses of organisms to environmental change across all levels of biological organization - from behavior to molecular systems - is of key importance in setting distribution patterns, yet studies often neglect the interactions of diverse types of biological variation (e.g. differences in thermal optima owing to genetic and acclimation-induced effects) with environmental variation, notably at the scale of microhabitats. Intertidal species have to cope with extreme and frequently changing thermal stress, and have shown high variation in thermal sensitivities and adaptive responses at different levels of biological organization. Here, I review the physiological and biochemical adaptations of intertidal species to environmental temperature on multiple spatial and temporal scales. With fine-scale datasets for the thermal limits of individuals and for environmental temperature variation at the microhabitat scale, we can map the thermal sensitivity for each individual in different microhabitats, and then scale up the thermal sensitivity analysis to the population level and, finally, to the species level by incorporating physiological traits into species distribution models. These more refined mechanistic models that include consideration of physiological variations have higher predictive power than models that neglect these variations, and they will be crucial to answering the questions posed above concerning adaptive mechanisms and the roles they play in governing distribution patterns in a rapidly changing world.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.245745DOI Listing

Publication Analysis

Top Keywords

intertidal species
16
species distribution
8
levels biological
8
biological organization
8
distribution patterns
8
environmental temperature
8
thermal sensitivity
8
species
7
variation
6
thermal
6

Similar Publications

Background: Mangrove plants growing in the high salt environment of coastal intertidal zones colonize a variety of microorganisms in the phyllosphere, which have potential salt-tolerant and growth-promoting effects. However, the characteristics of microbial communities in the phyllosphere of mangrove species with and without salt glands and the differences between them remain unknown, and the exploration and the agricultural utilization of functional microbial resources from the leaves of mangrove plants are insufficient.

Results: In this study, we examined six typical mangrove species to unravel the differences in the diversity and structure of phyllosphere microbial communities between mangrove species with or without salt glands.

View Article and Find Full Text PDF

Background: As a globally farmed oyster species, Magallana gigas has garnered significant attention due to the contaminated RNA viruses that have caused illness in humans. However, limited knowledge is available on the bioaccumulation status and overall diversity of RNA virome in the M. gigas digestive tissues (DTs).

View Article and Find Full Text PDF

Modularity buffers the spread of spatial perturbations in macroalgal networks.

Curr Biol

December 2024

Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy; CoNISMa, Piazzale Flaminio 9, 00196 Rome, Italy.

Theory predicts that spatial modular networks contain the propagation of local disturbances, but field experimental tests of this hypothesis are lacking. We combined a field experiment with a metacommunity model to assess the role of modularity in buffering the spatial spread of algal turfs in three replicated canopy-dominated macroalgal networks. Experimental networks included three modules where plots with intact canopy cover (nodes) were connected through canopy-thinned corridors.

View Article and Find Full Text PDF

Mangroves are highly salt-tolerant species, which live in saline intertidal environments, but rely on alternative, less saline water to maintain hydraulic integrity and plant productivity. Foliar water uptake (FWU) is thought to assist in hydration of mangroves, particularly during periods of acute water deficit. We investigated the dynamics of FWU in Avicennia marina and Aegiceras corniculatum by submerging and spraying excised branches and measuring leaf water potential (Ψ) at different time intervals.

View Article and Find Full Text PDF

The metabolic characteristics and environmental adaptations of the intertidal bacterium sp. LCG004.

Front Microbiol

November 2024

Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.

The intertidal zone, a dynamic interface of marine, atmospheric, and terrestrial ecosystems, exposes microorganisms to rapid shifts in temperature, salinity, and oxidative stress. Strain LCG004, representing a novel species, was isolated from the Lu Chao Harbor's intertidal seawater in the Western Pacific Ocean. The genome of the organism reveals its metabolic versatility, enabling the utilization of various organic substrates-ranging from organic acids, amino acids, to sugars, and encompassing complex carbohydrates-as well as adept handling of inorganic nutrients, thereby highlighting its significant role in the cycling of nutrients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!