Recently, peptide and sugar-based multicomponent systems have gained much interest in attaining the sophisticated structure and biofunctional complexity of the extracellular matrix (ECM). To this direction, we have designed for the first time a biologically relevant minimalist Cardin-motif peptide capable of binding ECM-derived glycosaminoglycans. Herein, we explored Cardin-motif peptide and heparin-based biomolecular matrix by employing simple noncovalent interactions at the molecular level. Interestingly, this peptide was inadequate to induce hydrogelation at ambient pH due to the presence of basic amino acids. However, addition of heparin successfully triggered its gelation at physiological pH following favorable electrostatic interactions with heparin. Importantly, the newly developed scaffolds displayed tunable nanofibrous morphology and superior mechanical properties as controlled simply by the differential mixing ratio of both biomolecular entities. Additionally, these composite scaffolds could closely mimic the complexity of ECM as they demonstrated superior biocompatibility and enhanced growth and proliferation of neural cells as compared to the peptide scaffold.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.3c00621DOI Listing

Publication Analysis

Top Keywords

cardin-motif peptide
12
peptide heparin-based
8
peptide
6
designing cardin-motif
4
heparin-based multicomponent
4
multicomponent advanced
4
advanced bioactive
4
bioactive hydrogel
4
hydrogel scaffolds
4
scaffolds control
4

Similar Publications

Multicomponent self-assembly represents a cutting-edge strategy in peptide nanotechnology, enabling the creation of nanomaterials with enhanced physical and biological characteristics. This approach draws inspiration from the highly complex nature of the native extracellular matrix (ECM) constituting multicomponent biomolecular entities. In recent years, the combination of bioactive peptide with polymer has gained significant attention for the fabrication of novel biomaterials due to their inherent specificity, tunable physiochemical properties, biocompatibility, and biodegradability.

View Article and Find Full Text PDF

Designing highly tunable anion responsive Cardin-motif peptide based self-assembled nanostructures for accessing diverse cellular response.

Colloids Surf B Biointerfaces

January 2025

Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab 140306, India. Electronic address:

Several anions present in the extracellular matrix (ECM) not only have significant physiological functions in ECM but also play an important role in regulating peptide-based self-assembly. Herein, we have employed a non-conventional approach to overcome the limitations of the positively charged Cardin-motif peptide that failed to self-assemble at physiological pH. We used a simple and elegant strategy by employing different anions such as HPO, Cl and I to mask the overall surface charge of peptide.

View Article and Find Full Text PDF

Recently, peptide and sugar-based multicomponent systems have gained much interest in attaining the sophisticated structure and biofunctional complexity of the extracellular matrix (ECM). To this direction, we have designed for the first time a biologically relevant minimalist Cardin-motif peptide capable of binding ECM-derived glycosaminoglycans. Herein, we explored Cardin-motif peptide and heparin-based biomolecular matrix by employing simple noncovalent interactions at the molecular level.

View Article and Find Full Text PDF

Enhanced Antibacterial Properties of Self-Assembling Peptide Amphiphiles Functionalized with Heparin-Binding Cardin-Motifs.

ACS Appl Mater Interfaces

July 2017

Department of Chemical Engineering, Northeastern University , 313 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States.

The emergence of antibiotic resistance in bacteria has caused many healthcare problems and social burdens. In this study, a type of self-assembled peptide amphiphiles (PA) functionalized with a heparin-binding Cardin-motif peptide (sequence (AKKARK)) has been designed to combat bacterial drug resistance. Above the critical micelle concentration (CMC) at 45 μM, these amphiphilic Cardin antimicrobial peptide (ACA-PA) can self-assemble into cylindrical supramolecular structures (7-10 nm in diameter) via hydrophobic interactions and β-sheet secondary conformation.

View Article and Find Full Text PDF

The effect of peptide length and electrostatics on the interaction between Cardin motif peptides and lipid membranes was investigated for (AKKARA)(n) (n = 1-4) and (ARKAAKKA)(n) (n = 1-3) peptides (A, K, and R refer to alanine, lysine, and arginine, respectively) by fluorescence spectroscopy, circular dichroism, ellipsometry, z potential, and photon correlation spectroscopy measurements. The effect of the peptides regarding leakage induction of both zwitterionic and anionic liposomes increased with increasing peptide length, as did the peptide-induced killing of Enterococcus faecalis and Bacillus subtilis bacteria. The peptides, characterized by a random coil conformation both in buffer and when attached to the liposomes (helix content less than 20%), displayed an increased adsorption with increasing peptide length, and plateau adsorption for the longest peptides corresponded to 1 peptide per 65 and 17 lipid molecules for zwitterionic and anionic membranes, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!