Exosomal microRNAs: potential nanotherapeutic targets for diabetic kidney disease.

Nanomedicine (Lond)

Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.

Published: October 2023

Diabetic kidney disease (DKD) is a primary cause for end-stage renal disease, but no specific therapeutic approaches exist. Exosomal miRNAs, a key functional cargo of nanovesicles, play crucial roles in the pathophysiological processes of DKD. Exosomal miRNAs are involved in cell-to-cell transfer of biological information, mediating nephritic inflammation, oxidative stress, apoptosis, autophagy, epithelial-mesenchymal transition and fibrosis. Circulating exosomal miRNAs derived from urine or serum might function as noninvasive prognostic biomarkers for DKD. Exosomal miRNAs from stem cells have been reported to exert beneficial effects on diabetic kidneys, which suggests that these exosomes might function as potential nanotherapy tools for treating DKD. In this review, we have summarized recent studies based on the association between exosomal miRNAs and DKD.

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm-2023-0023DOI Listing

Publication Analysis

Top Keywords

exosomal mirnas
20
diabetic kidney
8
kidney disease
8
dkd exosomal
8
exosomal
6
dkd
5
mirnas
5
exosomal micrornas
4
micrornas potential
4
potential nanotherapeutic
4

Similar Publications

Remodeling the Proinflammatory Microenvironment in Osteoarthritis through Interleukin-1 Beta Tailored Exosome Cargo for Inflammatory Regulation and Cartilage Regeneration.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.

Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy.

View Article and Find Full Text PDF

Background: Exosomes sourced from mesenchymal stem cells (MSC-EXOs) have become a promising therapeutic tool for sepsis-induced myocardial dysfunction (SMD). Our previous study demonstrated that Apelin pretreatment enhanced the therapeutic benefit of MSCs in myocardial infarction by improving their paracrine effects. This study aimed to determine whether EXOs sourced from Apelin-pretreated MSCs (Apelin-MSC-EXOs) would have potent cardioprotective effects against SMD and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Skeletal muscle (SKM) has crucial roles in locomotor activity and posture within the body and also functions have been recognized as an actively secretory organ. Numerous bioactive molecules are secreted by SKM and transported by extracellular vesicles (EVs), a novel class of mediators of communication between cells and organs that contain various types of cargo molecules including lipids, proteins and nucleic acids. SKM-derived EVs (SKM-EVs) are intercellular communicators with significant roles in the crosstalk between SKM and other organs.

View Article and Find Full Text PDF

Exosome-loading miR-205: a two-pronged approach to ocular neovascularization therapy.

J Nanobiotechnology

January 2025

Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.

Pathological neovascularization is a hallmark of many vision-threatening diseases. However, some patients exhibit poor responses to current anti-VEGF therapies due to resistance and limited efficacy. Recent studies have highlighted the roles of noncoding RNAs in various biological processes, paving the way for RNA-based therapeutics.

View Article and Find Full Text PDF

Mesenchymal Stem Cell-Sourced Exosomes as Potentially Novel Remedies for Severe Dry Eye Disease.

J Ophthalmol

January 2025

Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica Street, Kragujevac 34000, Serbia.

Severe dry eye disease (DED) is an inflammatory condition characterized by a lack of sufficient moisture or lubrication on the surface of the eye, significantly impacting the quality of life and visual function. Since detrimental immune response is crucially responsible for the development and aggravation of DED, therapeutic agents which modulate phenotype and function of eye-infiltrated inflammatory immune cells could be used for the treatment of severe DED. Due to their potent immunomodulatory properties, mesenchymal stem cells (MSCs) represent potentially new remedies for the treatment of inflammatory eye diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!