Polarity reversal and strain modulation of Janus MoSSe/GaN polar semiconductor heterostructures.

Phys Chem Chem Phys

Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, China.

Published: November 2023

Beyond three-dimensional (3D) architectures, polar semiconductor heterostructures are developing in the direction of two-dimensional (2D) scale with mix-dimensional integration for novel properties and multifunctional applications. Herein, we stacked 2D Janus MoSSe and 3D wurtzite GaN polar semiconductors to construct MoSSe/GaN polar heterostructures by polarity configurations. The structural stability was enhanced as binding energy changed from -0.08 eV/-0.17 eV in the N polarity to -0.24 eV/-0.42 eV in the Ga polarity. In particular, the polarity reversal of GaN in contact with Janus MoSSe not only determined the charge transfer direction but also significantly increased the electrostatic potential difference from 0.71 eV/0.78 eV in the N polarity to 3.13 eV/2.24 eV in the Ga polarity. In addition, strain modulation was further utilized to enhance interfacial polarization and tune the electronic energy band profiles of Janus MoSSe/GaN polar heterostructures. By applying in-plane biaxial strains, the AA and AA' polarity configurations induced band alignment transition from type I (tensile) to type II (compressive). As a result, both the polarity reversal and strain modulation provide effective ways for the multifunctional manipulation and facile design of Janus MoSSe/III-nitrides polar heterostructures, which broaden the Janus 2D/3D polar semiconducting devices in advanced electronics, optoelectronics, and energy harvesting applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp02137hDOI Listing

Publication Analysis

Top Keywords

polarity reversal
12
strain modulation
12
mosse/gan polar
12
polar heterostructures
12
polarity
9
reversal strain
8
janus mosse/gan
8
polar semiconductor
8
semiconductor heterostructures
8
janus mosse
8

Similar Publications

S100A8/A9 Promotes Dendritic Cell-Mediated Th17 Cell Response in Sjögren's Dry Eye Disease by Regulating the Acod1/STAT3 Pathway.

Invest Ophthalmol Vis Sci

January 2025

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.

Purpose: To investigate the role of S100A8/A9 in the pathogenesis of Sjögren's dry eye disease (SjDED) and explore its potential mechanism of action.

Methods: S100A8/A9 expression was determined by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Tear secretion, corneal fluorescein staining, and hematoxylin and eosin staining were used to evaluate the effect of paquinimod, a S100A8/A9 inhibitor, on dry eye disease in nonobese diabetic (NOD) mice.

View Article and Find Full Text PDF

The structural and electronic changes are investigated in a 3D hybrid perovskite, methylhydrazinium lead chloride (MHyPbCl) from a host/guest perspective as it transitions from a highly polar to less polar phase upon cooling, using first-principles calculations. The two phases vary structurally in the guest (MHy) orientation and the two differently distorted host (lead halide) layers. These findings highlight the critical role of guest reorientation in reducing host distortion at high temperatures, making the former the primary order parameter for the transition, a notable contrast to the case of other hybrid perovskites.

View Article and Find Full Text PDF

Thermally Controlled -site Cation Ordering and Coupled Polarity in Double Perovskite NaLaZrO.

Inorg Chem

January 2025

Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

-site cation ordering in double perovskites is crucially important for their physical properties. In this study, polycrystalline samples of Zr-based double perovskite NaLaZrO were synthesized via high-temperature solid-state reactions, and the influence of the heating temperature and cooling rate on their crystal structures was investigated using synchrotron X-ray diffractometry and optical second harmonic generation. The samples prepared at 1200 °C, followed by slow cooling to room temperature, crystallize in a polar 2 structure, exhibiting partial -site cation ordering, with Na- and La-rich -site layers alternately stacked along the axis.

View Article and Find Full Text PDF

Anionic modulation induces molecular polarity in a three-component crown ether system.

Dalton Trans

January 2025

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.

Three-component crown ether phase change materials are characterized by a structural phase change in response to external stimuli such as temperature and electric or magnetic fields, resulting in significant changes in physical properties. In this work, we designed and synthesized two novel host-guest crown ether molecules [(PTFMA)(15-crown-5)ClO] (1) and [(PTFMA)(15-crown-5)PF] (2), through the reaction of -trifluoromethylaniline (PTFMA) with 15-crown-5 in perchloric acid or hexafluorophosphoric acid aqueous solution. Compound 1 undergoes a structural change from the non-centrosymmetric space group (2) to the centrosymmetric space group (2/) with increasing temperature.

View Article and Find Full Text PDF

The levels of biogenesis of lysosome organelles complex 1 subunit 1 (BLOC1S1) control mitochondrial and endolysosome organelle homeostasis and function. Reduced fidelity of these vacuolar organelles is increasingly being recognized as important in instigating cell-autonomous immune cell activation. We reasoned that exploring the role of BLOC1S1 in CD4 T cells, may further advance our understanding of regulatory events linked to mitochondrial and/or endolysosomal function in adaptive immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!