A series of novel amidinate ligated four-coordinated boron compounds, [(Ar)-C(BuN)BF] (1BF2-6BF2), were synthesised and structurally characterised (Ar = 1-phenyl, 2-naphthyl, 2-anthryl, 9-anthryl, 9-phenanthryl and 1-pyrene). The increased π-conjugation of Ar-substitution on the amidinate ligand results in dark blue-emission in compounds 3BF2-6BF2. All these compounds are emissive in the solution state. The 2-anthryl substituted compound 3BF2 was found to exhibit a maximum quantum yield of 48% in dichloromethane. Theoretical studies were carried out which validate the hypothesis about the increased π-conjugation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt03378c | DOI Listing |
Sci Adv
January 2025
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.
The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates.
View Article and Find Full Text PDFNanotechnology
January 2025
Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, Uppsala, SE-751 20, SWEDEN.
The growing world population and climate change are key drivers for the increasing pursuit of more efficient and environmentally-safe food production. In this scenario, the large scale use of herbicides demands the development new technologies to control and monitor the application of these compounds, due to their several environmental and health-related problems. Motivated by all these issues, in this work, a hybrid graphene/boron nitride nanopore is explore to detect/identify herbicide molecules (Glyphosate, AMPA, Diuron, and 2,4-D).
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Pharmacy, China Pharmaceutical University, Nanjing, China. Electronic address:
Background: Foodborne pathogenic bacteria lead to a significant increase in illnesses and fatalities annually. In the early stage of a pathogenic bacterial infection, the concentration of bacteria in food is lower than the detection limit of most technology which enhances the difficulty in diagnosis. It is a serious challenge for researchers to develop a rapid, sensitive, accurate, and stable pathogenic bacterial determination method without costly equipment and highly skilled operators.
View Article and Find Full Text PDFJ Biomed Sci
January 2025
Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
Background: Enolase 1 (ENO1) is a conserved glycolytic enzyme that regulates glycolysis metabolism. However, its role beyond glycolysis in the pathophysiology of multiple myeloma (MM) remains largely elusive. Herein, this study aimed to elucidate the function of ENO1 in MM, particularly its impact on mitophagy under bortezomib-induced apoptosis.
View Article and Find Full Text PDFJ Trace Elem Med Biol
January 2025
Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences Bahawalpur, 63100, Pakistan. Electronic address:
Background: Boron, a naturally abundant trace element, plays a crucial role in various biological processes and influences important physiological functions such as bone health, immune response, and cellular metabolism. Its applications span diverse scientific fields including anatomy, pharmacology, reproduction, medicine, and agriculture.
Objectives: This review examines the diverse functions of boron-compounds in biological systems and highlights their therapeutic potential, challenges associated with toxicity, and mechanisms underlying their biological interactions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!