Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alstoscholarinoid A is a novel rearranged triterpene with an unprecedented 6/6/5/6/6/6 framework and an additional unique C28 → C11-olide F-ring, and displays antihyperuricemic bioactivity. Herein, we report a bio-inspired synthesis of alstoscholarinoid B in a stepwise manner, which is amenable to gram-scale synthesis. The synthesis involved the Chugaev elimination as a key step to realize the migration of the Δ-double bond of oleanolic acid, and also featured a sequential LiHMDS-mediated intramolecular aldol condensation/lactonization to establish the polycyclic ring system. Additionally, a tandem deprotection/aldol condensation/lactonization process under the influence of LiI/2,4,6-collidine for forging the polycyclic scaffold was also serendipitously discovered. Mechanistic studies indicated that lithium carboxylate might function as an inner base for the chemoselective α-deprotonation of the C12-aldehyde.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3ob01625k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!