Observational medical data present unique opportunities for analysis of medical outcomes and treatment decision making. However, because these datasets do not contain the strict pairing of randomized control trials, matching techniques are to draw comparisons among patients. A key limitation to such techniques is verification that the variables used to model treatment decision making are also relevant in identifying the risk of major adverse events. This article explores a deep mixture of experts approach to jointly learn how to match patients and model the risk of major adverse events in patients. Although trained with information regarding treatment and outcomes, after training, the proposed model is decomposable into a network that clusters patients into phenotypes from information available before treatment. This model is validated on a dataset of patients with acute myocardial infarction complicated by cardiogenic shock. The mixture of experts approach can predict the outcome of mortality with an area under the receiver operating characteristic curve of 0.85 ± 0.01 while jointly discovering five potential phenotypes of interest. The technique and interpretation allow for identifying clinically relevant phenotypes that may be used both for outcomes modeling as well as potentially evaluating individualized treatment effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613929PMC
http://dx.doi.org/10.1145/3616021DOI Listing

Publication Analysis

Top Keywords

mixture experts
12
treatment decision
8
decision making
8
risk major
8
major adverse
8
adverse events
8
experts approach
8
treatment
5
patients
5
clinical phenotyping
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!