Background: To determine the protective role of mesencephalic astrocyte-derived neurotrophic factor (MANF) in regulating sepsis-associated acute kidney injury (S-AKI).
Methods: A total of 96 mice were randomly divided into the control group, control+MANF group, S-AKI group, and S-AKI+MANF group. The S-AKI model was established by injecting lipopolysaccharide (LPS) at 10 mg/kg intraperitoneally. MANF (200 μg/kg) was administered to the control+MANF and S-AKI+MANF groups. An equal dose of normal saline was administered daily intraperitoneally in the control and S-AKI groups. Serum and kidney tissue samples were obtained for biochemical analysis. Western blotting was used to detect the protein expression of MANF in the kidney, and enzyme-linked immunosorbent assay (ELISA) was used to determine expression of MANF in the serum, pro-inflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]). Serum creatinine (SCr), and blood urea nitrogen (BUN) were examined using an automatic biochemical analyzer. In addition, the kidney tissue was observed for pathological changes by hematoxylin-eosin staining. The comparison between two groups was performed by unpaired Student's -test, and statistics among multiple groups were carried out using Tukey's post hoc test following one-way analysis of variance (ANOVA). A -value <0.05 was considered statistically significant.
Results: At the early stage of S-AKI, MANF in the kidney tissue was up-regulated, but with the development of the disease, it was down-regulated. Renal function was worsened in the S-AKI group, and TNF-α and IL-6 were elevated. The administration of MANF significantly alleviated the elevated levels of SCr and BUN and inhibited the expression of TNF-α and IL-6 in the kidney. The pathological changes were more extensive in the S-AKI group than in the S-AKI+MANF group.
Conclusion: MANF treatment may significantly alleviate renal injury, reduce the inflammatory response, and alleviate or reverse kidney tissue damage. MANF may have a protective effect on S-AKI, suggesting a potential treatment for S-AKI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613790 | PMC |
http://dx.doi.org/10.5847/wjem.j.1920-8642.2023.077 | DOI Listing |
Int J Neuropsychopharmacol
January 2025
Centre for Clinical Neurosciences, McMaster University, Hamilton, ON.
Background: Bipolar disorder (BD) has been associated with impaired cellular resilience. Recent studies have shown abnormalities in the unfolded protein response (UPR) in BD. The UPR is the cellular response to endoplasmic reticulum (ER) stress.
View Article and Find Full Text PDFArch Gerontol Geriatr
December 2024
Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China. Electronic address:
Proc Natl Acad Sci U S A
August 2024
Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110.
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident secretory protein that reduces inflammation and promotes proliferation in pancreatic β cells. Numerous studies have highlighted the potential of MANF as a therapeutic agent for diabetes mellitus (DM), making it essential to understand the mechanisms underlying MANF's functions. In our previous search for a molecule that mediates MANF signaling, we identified Neuroplastin (NPTN) as a binding partner of MANF that localizes on the cell surface.
View Article and Find Full Text PDFCNS Neurosci Ther
November 2024
School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
Aim: Cerebral ischemic stroke (IS) is one of the leading causes of morbidity and mortality globally. However, the mechanisms underlying IS injury remain poorly understood. Ring finger protein 2 (RNF2), the member of the polycomb family (PcG), has been implicated in diverse biological and pathological conditions.
View Article and Find Full Text PDFNeurochem Res
November 2024
Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China.
Sepsis-associated encephalopathy (SAE) is a severe neurological complication of sepsis, characterized by cognitive impairment and increased mortality. Owing to the established neuroprotective and immunomodulatory effects of Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) in a plethora of neurological disorders, our study aimed to investigate the role of MANF in SAE and evaluate its potential as a therapeutic target. Employing a cecal ligation and puncture (CLP) mouse model of sepsis, we analyzed MANF expression in the hippocampus and cortex, and evaluated the influence of intranasally administered recombinant human MANF (rhMANF) on symptoms of SAE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!