Computational fluid dynamics simulation analysis of the effect of curved rice leaves on the deposition behaviour of droplets.

Plant Methods

College of Engineering/Key Laboratory of Intelligent Equipment for Agriculture of Jiangsu Province, Nanjing Agricultural University, Nanjing, 210031, China.

Published: October 2023

Background: Although previous studies on the droplet deposition behaviour of rice leaves have modelled the leaves as flat surface structures, their curved surface structures actually have a significant effect on droplet deposition.

Results: In this paper, the statistical distribution of the coordinate parameters of rice leaves at the elongation stage was determined, computational fluid dynamics (CFD) simulation models of droplet impact on rice leaves with different curvature radii were built, and the effect of leaf curvature radius on the deposition behaviour and spreading diameter of droplets on rice leaves was studied using validated simulation models. The results showed that the average relative errors of the CFD simulation models were in the range of 2.23-9.63%. When the droplets struck the rice leaves at a speed of 4 m/s, the 50 μm droplets did not bounce within the curvature radii of 25-120 cm, the maximum spreading diameters of 200 and 500 μm droplets that just adhered to the leaves were 287 and 772 μm, respectively. The maximum spreading diameters of 50, 200, and 500 μm droplets that just split were 168, 636, and 1411 μm, respectively. As the curvature radii of the leaves increased, the maximum spreading diameter of the droplets gradually decreased, and droplet bouncing was more likely to occur. However, a special case in which no significant change in the maximum spreading diameter arose when 50 μm droplets hit a leaf with a curvature radius exceeding 50 cm.

Conclusion: Splitting generally occurred for large droplets with a small curvature radius and small tilt angle; bouncing generally occurred for large droplets with a large curvature radius and large tilt angle. When the droplet was small, the deposition behaviour was mostly adhesion. The change in spreading diameter after stabilisation was similar to the change in maximum spreading diameter, where the spreading diameter after stabilisation greatly increased after droplet splitting. This paper serves as a reference for the study of pesticide droplet deposition and its application in rice-plant protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617242PMC
http://dx.doi.org/10.1186/s13007-023-01082-2DOI Listing

Publication Analysis

Top Keywords

rice leaves
24
spreading diameter
24
maximum spreading
20
deposition behaviour
16
curvature radius
16
simulation models
12
curvature radii
12
droplets
10
leaves
9
computational fluid
8

Similar Publications

Effects of Drought Stress at the Booting Stage on Leaf Physiological Characteristics and Yield of Rice.

Plants (Basel)

December 2024

Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.

Drought stress is a major environmental constraint that limits rice ( L.) production worldwide. In this study, we investigated the effects of drought stress at the booting stage on rice leaf physiological characteristics and yield.

View Article and Find Full Text PDF

Comparative Transcriptomic Analysis and Candidate Gene Identification for Wild Rice (GZW) and Cultivated Rice (R998) Under Low-Temperature Stress.

Int J Mol Sci

December 2024

Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China.

Rice is a short-day thermophilic crop that originated from the low latitudes of the tropics and subtropics; it requires high temperatures for growth but is sensitive to low temperatures. Therefore, it is highly important to explore and analyze the molecular mechanism of cold tolerance in rice to expand rice planting areas. Here, we report a phenotypic evaluation based on low-temperature stress in indica rice (R998) and wild rice (GZW) and a comparative transcriptomic study conducted at six time points.

View Article and Find Full Text PDF

A MACPF Protein OsCAD1 Balances Plant Growth and Immunity Through Regulating Salicylic Acid Homeostasis in Rice.

Plant Cell Environ

January 2025

State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang, China.

Unraveling the mechanisms behind plant growth and immunity contributes to effective crop improvement. Membrane attack complex/perforin (MACPF) domain proteins play vital roles in innate and adaptive immunity in vertebrates; however, their molecular functions in plants remain largely unexplored. Here, we isolated and characterized a rice mutant, Oryza sativa constitutively activated cell death 1 (oscad1), which exhibited a lesion mimic phenotype and growth inhibition with increased cell death, elevated ROS accumulation, and enhanced resistance to bacterial blight Xanthomonas oryzae pv.

View Article and Find Full Text PDF

The present study evaluated the potential of Ashoka, Saraca asoca leaf meal (SLM), in carp diets following fermentative processing with a tannase-producing fish gut bacterium, Bacillus subtilis (KP765736). The processing of SLM led to a significant (P < 0.05) reduction in major anti-nutrients (tannin, trypsin inhibitor, and crude fiber), while crude protein content increased.

View Article and Find Full Text PDF

Co-application of hydrothermal carbonization aqueous phase and biogas slurry reduced ammonia volatilization in paddy.

J Environ Manage

January 2025

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.

Application of biogas slurry (BS) can promote ammonia (NH) volatilization. Algae sludge and Quercus acutissima leaves are rich in resources and nutrients, and can be effectively converted into valuable products. Hydrothermal carbonization technology (HTC) is a sustainable method for the treatment of wet biomass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!