Background: The early life stage is critical for the gut microbiota establishment and development. We aimed to investigate the lifelong impact of famine exposure during early life on the adult gut microbial ecosystem and examine the association of famine-induced disturbance in gut microbiota with type 2 diabetes.
Methods: We profiled the gut microbial composition among 11,513 adults (18-97 years) from three independent cohorts and examined the association of famine exposure during early life with alterations of adult gut microbial diversity and composition. We performed co-abundance network analyses to identify keystone taxa in the three cohorts and constructed an index with the shared keystone taxa across the three cohorts. Among each cohort, we used linear regression to examine the association of famine exposure during early life with the keystone taxa index and assessed the correlation between the keystone taxa index and type 2 diabetes using logistic regression adjusted for potential confounders. We combined the effect estimates from the three cohorts using random-effects meta-analysis.
Results: Compared with the no-exposed control group (born during 1962-1964), participants who were exposed to the famine during the first 1000 days of life (born in 1959) had consistently lower gut microbial alpha diversity and alterations in the gut microbial community during adulthood across the three cohorts. Compared with the no-exposed control group, participants who were exposed to famine during the first 1000 days of life were associated with consistently lower levels of keystone taxa index in the three cohorts (pooled beta - 0.29, 95% CI - 0.43, - 0.15). Per 1-standard deviation increment in the keystone taxa index was associated with a 13% lower risk of type 2 diabetes (pooled odds ratio 0.87, 95% CI 0.80, 0.93), with consistent results across three individual cohorts.
Conclusions: These findings reveal a potential role of the gut microbiota in the developmental origins of health and disease (DOHaD) hypothesis, deepening our understanding about the etiology of type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619253 | PMC |
http://dx.doi.org/10.1186/s12916-023-03123-y | DOI Listing |
FEMS Microbiol Ecol
January 2025
MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 - Muséum National d'Histoire Naturelle, CNRS - 43 rue Buffon, 75005 Paris, France.
Industrial production of the unicellular green alga Haematococcus lacustris is compromised by outbreaks of the fungal pathogen Paraphysoderma sedebokerense (Blastocladiomycota). Here, using axenic algal and fungal cultures and antibiotic treatments, we show that the bacterial microbiota of H. lacustris is necessary for the infection by P.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China. Electronic address:
Increasing annual soil salinization poses a major threat to global ecological security. Soil microorganisms play an important role in improving plant adaptability to stress tolerance, however, the mechanism of saline-alkali tolerance to plants associated with rhizosphere microbiome is unclear. We investigated the composition and structure of the rhizospheric bacteria and fungi communities of the saline-alkali tolerant (Oryza sativa var.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:
The remediation of sites co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) poses challenges for efficient and ecofriendly restoration methods. In this study, three strains (Pseudomonas sp. PDC-1, Rhodococcus sp.
View Article and Find Full Text PDFGenes (Basel)
November 2024
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
Chemical fumigation can effectively inhibit the occurrence of soil-borne diseases; however, this approach can negatively affect the structure of the soil microbial community. The combination of soil fumigant and organic fertilizer application thus represents a widely adopted strategy in agricultural practice. Traditional Chinese medicine residue (TCMR) is a high-quality organic fertilizer; however, the impact of post-fumigation TCMR application on keystone taxa and their functional traits remains uncertain.
View Article and Find Full Text PDFMicrobiol Res
March 2025
International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco. Electronic address:
The plant rhizosphere microbiome plays a crucial role in plant growth and health. Within this microbiome, bacteria dominate, exhibiting traits that benefit plants, such as facilitating nutrient acquisition, fixing nitrogen, controlling pathogens, and promoting root growth. This study focuses on designing synthetic bacterial consortia using key bacterial strains which have been mapped and then isolated from the sorghum rhizosphere microbiome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!