A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fragility of the Schrödinger Cat in thermal environments. | LitMetric

Fragility of the Schrödinger Cat in thermal environments.

Sci Rep

Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7, Canada.

Published: October 2023

We describe the decoherence instability of Schrödinger Cat states in the two-site Bose-Hubbard model with an attractive on-site interaction between particles. For N particles with onsite attractive energy U and hopping amplitude between sites t, Cat states exist for [Formula: see text] at zero temperature. However, they are increasingly unstable to small thermal fluctuations as the Cat itself is increasingly well-defined and its components become well-separated. For any given [Formula: see text], the decoherence temperature becomes smaller for large N. The loss of off-diagonal coherence peaks in the equilibrium density matrix is dominated by the thermal admixture of the first excited state of the many-body system with its ground state. Particle number fluctuations, described in the grand canonical ensemble also reduce coherence, but to a lesser degree than thermal fluctuations. The full density matrix of the Schrödinger Cat is obtained by exact numerical diagonalization of the many-body Hamiltonian and a narrow regime in the parameter space of the particle number, temperature, and U/t is identified where small Cat states may survive decoherence in a physical environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618529PMC
http://dx.doi.org/10.1038/s41598-023-45701-3DOI Listing

Publication Analysis

Top Keywords

schrödinger cat
12
cat states
12
[formula text]
8
thermal fluctuations
8
density matrix
8
particle number
8
cat
6
fragility schrödinger
4
thermal
4
cat thermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!