Wearable sensors have the potential to increase continuity of care and reduce healthcare expenditure. The user concerns and preferences regarding wearable sensors are the least addressed topic in related literature. Therefore, this study aimed first, to examine the preferences of the adult Swiss population regarding the use of wearable sensors in primary healthcare. Second, the study aimed to explain and learn more about these preferences and why such wearable sensors would or would not be used. An explanatory sequential design was used to reach the two aims. In the initial quantitative phase preferences of a nationwide survey were analyzed descriptively and a multivariable ordered logistic regression was used to identify key characteristics, that influence the preferences. In the second phase, eight semi-structured interviews were conducted. The cleaned study sample of the survey included 687 participants, 46% of whom gave a positive rating regarding the use of wearable sensors. In contrast, 44% gave a negative rating and 10% were neutral. The interviews showed that sensors should be small, not flashy and be compatible with everyday activities. Individuals without a current health risk or existing chronic disease showed lower preferences for using wearable sensors, particularly because they fear losing control over their own body. In contrast, individuals with increased risk or with an existing chronic disease were more likely to use wearable sensors as they can increase the personal safety and provide real-time health information to physicians. Therefore, an important deciding factor for and against the use of wearable sensors seems to be the perceived personal susceptibility for potential health problems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618354 | PMC |
http://dx.doi.org/10.1007/s10916-023-01998-1 | DOI Listing |
Nanomicro Lett
January 2025
Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
Metallic nanowires have served as novel materials for soft electronics due to their outstanding mechanical compliance and electrical properties. However, weak adhesion and low mechanical robustness of nanowire networks to substrates significantly undermine their reliability, necessitating the use of an insulating protective layer, which greatly limits their utility. Herein, we present a versatile and generalized laser-based process that simultaneously achieves strong adhesion and mechanical robustness of nanowire networks on diverse substrates without the need for a protective layer.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
January 2025
Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, USA.
Wearable sweat sensors for detecting biochemical markers have emerged as a transformative research area, with the potential to revolutionize disease diagnosis and human health monitoring. Since 2016, a substantial body of pioneering and translational work on sweat biochemical sensors has been reported. This review aims to provide a comprehensive summary of the current state-of-the-art in the field, offering insights and perspectives on future developments.
View Article and Find Full Text PDFAdv Mater
January 2025
Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
Omnidirectional strain sensing and direction recognition ability are features of the human tactile sense, essential to address the intricate and dynamic requirements of real-world applications. Most of the current strain sensors work by converting uniaxial strain into electrical signals, which restricts their use in environments with multiaxial strain. Here, the first device with simultaneous isotropic omnidirectional hypersensitive strain sensing and direction recognition (IOHSDR) capabilities is introduced.
View Article and Find Full Text PDFLab Chip
January 2025
Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology, 6-2-3, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan.
Integrating microfluidic elements onto a single chip offers many advantages, including miniaturization, portability, and multifunctionality, making such systems highly useful for biomedical, healthcare, and sensing applications. However, these chips need redesigning for compatibility with microfluidic fabrication methods such as photolithography. To address this, we integrated microfluidics technology into our previously developed humidity-driven energy harvester to create a self-powered system and redesigned it so that it could be fabricated using photolithography and printing.
View Article and Find Full Text PDFInnovation (Camb)
September 2024
Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, China.
The human skin maintains a comfortable and healthy somatosensory state by sensing different aspects of the thermal environment, including temperature value, heat source, energy level, and duration. However, state-of-the-art thermosensors only measure basic temperature values, not the full range of the thermosensation function of human skin. Here, we propose a heat source recognition () sensor of poly(butyl acrylate)-lithium bis(n-fluoroalkylsulfonyl)imide (PBA-Li:FSI; = 1, 3, 5), which enables response to temperature, pressure, and proximity stimulus signals based on the relaxation behavior of the ionic gel and distinguished between different types of heat sources (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!