Thirteen fungi that produce compounds with herbicidal activities were isolated, identified, and extracted under the assumption that the mechanism of action occurs during seed exposure to the extract. The extracts from all the fungal strains considerably decreased the growth parameters of Amaranthus tricolor L. The EC010 strain extracts showed the greatest effect. Through ITS region gene sequencing methods, the isolated EC010 was identified as a genus of Diaporthe. The results showed a significant (p < 0.05) inhibitory effect of 91.25% on germination and a decrease in shoot and root length by 91.28% and 95.30%, respectively. The mycelium of Diaporthe sp. was extracted using sequential extraction techniques for the partial separation of the herbicidal fraction. According to the bioassay activities, the EtOAc fraction showed the highest inhibitory activity. The osmotic stress of the A. tricolor seeds was studied. Although the extract increased the accumulation of proline and soluble protein, the treated seeds showed lower imbibition. While the activity of α-amylase was dramatically decreased after treatment. A cytogenetic assay in the treated Allium cepa L. root revealed a decrease in the mitotic index, an altered mitotic phase index, and a promotion of mitotic abnormalities. Accordingly, the Diaporthe sp. may serve as a potential herbicidal compound resource.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618292 | PMC |
http://dx.doi.org/10.1038/s41598-023-46201-0 | DOI Listing |
Burns Trauma
January 2025
Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China.
Background: Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
Proteins often harness extensive motions of domains and subunits to promote their function. Deciphering how these movements impact activity is key for understanding life's molecular machinery. The enzyme adenylate kinase is an intriguing example for this relationship; it ensures efficient catalysis by large-scale domain motions that lead to the enclosure of the bound substrates ATP and AMP.
View Article and Find Full Text PDFCurr Treat Options Neurol
November 2021
Department of Neurology, Biomedical Science Tower 3, University of Pittsburgh, Suite 7014, 3501 5th Avenue, Pittsburgh, PA 15260, USA.
Purpose Of Review: The gut microbiome is an emerging arena to investigate multiple sclerosis (MS) pathogenesis and potential therapeutics. In this review, we summarize the available data and postulate the feasibilities of potential MS therapeutic approaches that modulate the gut microbiome.
Recent Findings: Growing evidence indicates dysbiosis in the gut bacterial ecosystem in MS.
World J Gastroenterol
January 2025
State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, Xinjiang Uyghur Autonomous Region, China.
Background: polysaccharides (BSP) have antioxidant, immune regulation, and anti-fibrotic activities. However, the therapeutic effect and mechanisms underlying the action of BSP in metabolic dysfunction-associated steatotic liver disease (MASLD) have not been fully understood.
Aim: To investigate the therapeutic effects and mechanisms of BSP on MASLD by centering on the hepatocyte nuclear factor kappa B p65 (RelA)/hepatocyte nuclear factor-1 alpha (HNF1α) signaling.
Heliyon
January 2025
College of Politics and Governance, Mahasarakham University, Kantharawichai District, Mahasarakham, 44150, Thailand.
The imperative of addressing climate change has accentuated the pivotal role of reducing greenhouse gas emissions and harnessing the potential of community forests. This study meticulously explores the governance structures and mechanisms underpinning greenhouse gas emissions trading within community forests, aimed at curbing carbon emissions, and enhancing adaptive capacities in Thailand. With a central focus on cultivating enduring climate resilience, this research delves into the interplay of community perspectives with greenhouse gas emissions trading mechanisms, while also dissecting the genesis of sustainable strategies in the Thai context.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!