2D-TiCT MXene nanosheets intercalated with sodium ions (SI-TiCT) were synthesized and utilized in simultaneous adsorption and electrochemical regeneration with ciprofloxacin (CPX). The primary focus of this study is to investigate the long-term stability of SI-Ti3C2Tx MXene and to propose the underlying regeneration mechanisms. The successful synthesis of TiAlC, TiCT MXene, and SI-TiCT MXene was confirmed using X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. Electrochemical regeneration parameters such as charge passed, regeneration time, current density, and electrolyte composition were optimized with values of 787.5 C g, 7.5 min, 10 mA cm, and 2.5w/v% sodium chloride, respectively, enabling the complete regeneration of the SI-TiCT MXene. In addition, the electrochemical regeneration significantly enhanced CPX removal from the SI-TiCT MXene owing to partial amorphization, disorderliness, increased functional groups, delamination, and defect creation in the structure. Thus, the synthesized nano-adsorbent has proven helpful in practical water treatment with optimized electrochemical regeneration processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.140544DOI Listing

Publication Analysis

Top Keywords

electrochemical regeneration
20
si-tict mxene
12
regeneration
8
mxene
7
optimization electrochemical
4
regeneration intercalated
4
intercalated mxene
4
mxene adsorptive
4
adsorptive removal
4
removal ciprofloxacin
4

Similar Publications

Continuous decoupled redox electrochemical CO capture.

Nat Commun

December 2024

State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, P.R. China.

Electrochemical CO capture driven by renewable electricity holds significant potential for efficient decarbonization. However, the widespread adoption of this approach is currently limited by issues such as instability, discontinuity, high energy demand, and challenges in scaling up. In this study, we propose a scalable strategy that addresses these limitations by transforming the conventional single-step electrochemical redox reaction into a stepwise electrochemical-chemical redox process.

View Article and Find Full Text PDF

The development of efficient artificial photosynthesis systems is crucial for sustainable chemical production, as they mimic natural processes to convert solar energy into chemical products, thereby addressing both energy and environmental challenges. The main bottlenecks in current research include fabricating highly selective, stable, and scalable catalysts, as well as effectively harnessing the full spectrum of light, particularly the low-energy, long-wavelength portion. Herein, we report a novel composite photocatalyst system based on lead halide perovskites embedded in functionalized MOF glass.

View Article and Find Full Text PDF

Scalable Top-Down Approach for Recycling Highly Degraded Spent LiFePO via Lattice Fragmentation-Regeneration.

Small

December 2024

State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Designing efficient, scalable, and eco-friendly recycling technologies is crucial for addressing the widespread decommissioning of spent lithium-ion batteries. Here, an innovative top-down regeneration method is introduced to rejuvenate highly degraded LiFePO. Initially, the crystal structure of spent LiFePO is destroyed via the oxidation process, followed by the reconstruction of the LiFePO lattice through the reduction process.

View Article and Find Full Text PDF

We propose a hybrid electrocatalytic-bioelectrocatalytic reaction cascade integrated on a gas diffusion electrode for CO2 reduction under selective formation of methanol. Ag-Bi2O3 selectively reduces gaseous CO2 to formate at neutral pH conditions. A subsequent enzymatic cascade comprising formaldehyde dehydro-genase and alcohol dehydrogenase, which are both nicotinamide adenine dinucleotide (NAD)-dependent, further reduce formate sequentially to formaldehyde and methanol.

View Article and Find Full Text PDF

Low-Frequency Phonon Dispersion Relation Enabling Stable Cathode from Spent Lithium-Ion Batteries.

Adv Mater

December 2024

School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Engineering Research Center of Energy Storage Material and Chemistry, Universities of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710049, China.

Direct recycling technology can effectively solve the environmental pollution and resource waste problems caused by spent lithium-ion batteries. However, the repaired LiNiCoMnO (NCM) black mass by direct recycling technology shows an unsatisfactory cycle life, which is attributed to the formation of spinel/rock salt phases and rotational stacking faults caused by the in-plane and out-of-plane migration of transition metal (TM) atoms during charge/discharge. Herein, local lattice stress is introduced into the regenerated cathode during repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!