Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To elucidate how integrated fixed-film activated sludge (IFAS) system favors nitrogen removal performance under seasonal temperature variations, two push-flow reactors were operated with and without carriers under the same operating conditions. The results show that the IFAS system had significant advantages in shock response and low temperature adaptation, with a nitrogen removal rate of 0.37-0.53 kg-N(m·d) at the temperature of 8-12 °C. Anammox bacteria on carriers were almost unaffected by temperature variation, and its nitrogen removal contribution rate stabilized at 55 % in the IFAS system. The Haldane model reveals that the specific anammox activity in the IFAS system was 28 % to 49 % higher than that in the control system at 13 °C. Candidatus_Jettenia, with the highest abundance of 45 %, was the dominant species in the IFAS system and preferred to attach to the carriers. This study provides a feasible scheme for the application of anammox process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.129946 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!