Biochar (BC) has been used to remove antibiotics from wastewater. Microplastics are emerging contaminants of wastewater. The capacities of microplastics for adsorbing antibiotics and the effects of microplastics of different types and particle sizes on antibiotic adsorption by BC have not been studied. Here, adsorption isotherm and kinetics experiments were performed to investigate tetracycline and aureomycin adsorption to polyvinyl chloride particles with diameters of 10, 100, 500, and 2000 μm, polylactic acid particles with diameters of 30, 100, 500, and 2000 μm (PLA30, PLA100, PLA500, and PLA2000, respectively), and wheat straw BC. The highest tetracycline adsorption capacity (25.00 mg g) was found for a PLA30 + BC. The tetracycline adsorption capacities of the other microplastic particles were 20.44-24.57 mg g. The highest aureomycin adsorption capacity (39.50 mg g) was found for 10 μm polyvinyl chloride particles and BC. The aureomycin adsorption capacities of the other microplastic particles were 32.21-38.42 mg g. The tetracycline adsorption capacities were 13.69%, 6.28%, 5.49%, and 4.54% higher for PLA30 + BC, PLA100 + BC, PLA500 + BC, and PLA2000 + BC, respectively, than for only BC. This may have been because there were more sites available per unit mass of microplastic for adsorbing tetracycline and dissolved organic carbon on small microplastic particles than large microplastic particles. The results indicated that microplastics can adsorb antibiotics and increase the amounts of antibiotics adsorbed by BC. Therefore, it is essential to consider potential interactions between BC and microplastics when BC is used to remove antibiotics from wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.119332 | DOI Listing |
Toxicol Res (Camb)
February 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Baha University, Al-Baha 65779, Saudi Arabia.
Background: Microplastics are tiny plastic particles, typically less than 5 mm in size, formed from the breakdown of larger plastic products. This breakdown releases additives, including benzyl butyl phthalate (BBP), into the environment. Humans can be exposed to BBP through contaminated food and water, inhalation, and dermal contact.
View Article and Find Full Text PDFEnviron Sci Technol Lett
January 2025
EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh, EH9 3FJ, United Kingdom.
Detecting and quantifying tire wear particles (TWPs) in the environment pose a unique environmental challenge due to their chemical complexity. There are emerging concerns around TWPs due to their potential high numbers of particles released, outnumbering microplastics, as well as the leaching of toxic additives such as 6-PPD which has been linked to the death of salmon even when present at very low levels (<0.1 μg/L).
View Article and Find Full Text PDFEcol Appl
January 2025
Department of Environmental Science and Policy, University of California, Davis, Davis, California, USA.
Plastic pollution threatens almost every ecosystem in the world. Critically, many animals consume plastic, in part because plastic particles often look or smell like food. Plastic ingestion is thus an evolutionary trap, a phenomenon that occurs when cues are decoupled from their previously associated high fitness outcomes.
View Article and Find Full Text PDFChem Res Toxicol
January 2025
Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil.
Acrylonitrile-butadiene-styrene (ABS) is a thermoplastic copolymer commonly used in the electronics, automotive, and construction industries. In the aquatic environment, the formation of microplastics from larger-sized plastic waste occurs naturally, induced by physical, chemical, and biological processes that promote the aging of these particles. Here, we investigated the interactions between the freshwater amphipod and ABS microplastics (10-20 μm) (pristine and after accelerated aging) over 7 days of exposure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan, ROC.
With increasing energy demands, the need for coating materials with exceptional superhydrophobic properties has grown substantially. However, the widespread use of fluorinated compounds, solvents, and polymer-based synthetic materials has led to heightened levels of microplastics and pollutants. Here, we used a self-curing, solvent-free, and recyclable polyester polyol polymer material combined with (5 and 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!