A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic surfaces of latex films and their antifouling applications. | LitMetric

Dynamic surfaces of latex films and their antifouling applications.

J Colloid Interface Sci

Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, PR China. Electronic address:

Published: January 2024

Latex polymer particles have been widely used in industry and everyday life. For decades the fabrication of "smart" latex film from latex particles has been a great challenge due to the difficulty in the synthesis of the functional latex particles by traditional emulsion polymerization using small molecular surfactants. In this manuscript, a simple and environmentally-friendly approach to the fabrication of "smart" latex films with dynamic surfaces is reported. Latex particles with poly(n-butyl methacrylate) (PnBMA) in the cores and zwitterionic poly-3-[dimethyl-[2-(2-methylprop-2-enoyloxy) ethyl]azaniumyl]propane-1-sulfonate (PDMAPS) in the shells are synthesized by reversible addition-fragmentation chain transfer (RAFT) mediated surfactant-free emulsion polymerization. The kinetics for the emulsion polymerization is studied, and the latex particles are analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and dynamic light scattering (DLS). Latex films are prepared by casting aqueous solutions of the latex particles at temperatures above the glass transition temperature (T) of PnBMA. On the dried latex film, the hydrophobic PnBMA blocks occupy the top surface; after water treatment, the hydrophilic PDMAPS blocks migrate to the surface. A change in the surface hydrophilicity results in a change in the water contact angle of the latex film. A mechanism for the formation of the dynamic surface structure is proposed in this research. Antifouling applications of the latex films are investigated. Experimental results indicate that the water-treated latex film is able to efficiently inhibit protein adsorption and resist bacterial adhesion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.10.138DOI Listing

Publication Analysis

Top Keywords

latex particles
20
latex films
16
latex film
16
latex
14
emulsion polymerization
12
dynamic surfaces
8
antifouling applications
8
applications latex
8
fabrication "smart"
8
"smart" latex
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!