Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Latex polymer particles have been widely used in industry and everyday life. For decades the fabrication of "smart" latex film from latex particles has been a great challenge due to the difficulty in the synthesis of the functional latex particles by traditional emulsion polymerization using small molecular surfactants. In this manuscript, a simple and environmentally-friendly approach to the fabrication of "smart" latex films with dynamic surfaces is reported. Latex particles with poly(n-butyl methacrylate) (PnBMA) in the cores and zwitterionic poly-3-[dimethyl-[2-(2-methylprop-2-enoyloxy) ethyl]azaniumyl]propane-1-sulfonate (PDMAPS) in the shells are synthesized by reversible addition-fragmentation chain transfer (RAFT) mediated surfactant-free emulsion polymerization. The kinetics for the emulsion polymerization is studied, and the latex particles are analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and dynamic light scattering (DLS). Latex films are prepared by casting aqueous solutions of the latex particles at temperatures above the glass transition temperature (T) of PnBMA. On the dried latex film, the hydrophobic PnBMA blocks occupy the top surface; after water treatment, the hydrophilic PDMAPS blocks migrate to the surface. A change in the surface hydrophilicity results in a change in the water contact angle of the latex film. A mechanism for the formation of the dynamic surface structure is proposed in this research. Antifouling applications of the latex films are investigated. Experimental results indicate that the water-treated latex film is able to efficiently inhibit protein adsorption and resist bacterial adhesion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.10.138 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!