Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The instanton expression for the thermal transmission probability through a one-dimensional barrier is derived by using the uniform semiclassical energy-dependent transmission coefficient of Kemble. The resulting theory does not diverge at the "crossover temperature" but changes smoothly. The temperature-dependent energy of the instanton is the same as the barrier height when ℏ = π and not 2π as in the "standard" instanton theory. The concept of a crossover temperature between tunneling and thermal activation, based on the divergence of the instanton rate, is obsolete. The theory is improved by assuring that at high energy when the energy-dependent transmission coefficient approaches unity the integrand decays exponentially as dictated by the Boltzmann factor and not as a Gaussian. This ensures that at sufficiently high temperatures the uniform theory reduces to the classical. Application to Eckart barriers demonstrates that the uniform theory provides a good estimate of the numerically exact result over the whole temperature range.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641875 | PMC |
http://dx.doi.org/10.1021/acs.jpclett.3c02779 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!