Proteins are commonly encapsulated in alginate gels for drug delivery and tissue-engineering applications. However, there is limited knowledge of how encapsulation impacts intrinsic protein properties such as folding stability or unfolding kinetics. Here, we use fast relaxation imaging (FReI) to image protein unfolding in situ in alginate hydrogels after applying a temperature jump. Based on changes in the Förster resonance energy transfer (FRET) response of FRET-labeled phosphoglycerate kinase (PGK), we report the quantitative impact of multiple alginate hydrogel concentrations on protein stability and folding dynamics. The gels stabilize PGK by increasing its melting temperature up to 18.4 °C, and the stabilization follows a nonmonotonic dependence on the alginate density. In situ kinetic measurements also reveal that PGK deviates more from two-state folding behavior in denser gels and that the gel decreases the unfolding rate and accelerates the folding rate of PGK, compared to buffer. Phi-value analysis suggests that the folding transition state of an encapsulated protein is structurally similar to that of folded protein. This work reveals both beneficial and negative impacts of gel encapsulation on protein folding, as well as potential mechanisms contributing to altered stability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.3c00764DOI Listing

Publication Analysis

Top Keywords

protein folding
8
folding stability
8
alginate hydrogels
8
protein
7
folding
6
alginate
5
stability
4
stability kinetics
4
kinetics alginate
4
hydrogels proteins
4

Similar Publications

Decoding Extracellular Protein Glycosylation in Human Health and Disease.

Annu Rev Anal Chem (Palo Alto Calif)

January 2025

Department of Chemistry, Yale University, New Haven, Connecticut, USA;

Protein glycosylation, the covalent attachment of carbohydrate, or glycan, structures onto the protein backbone, is one of the most complex and heterogeneous post-translational modifications (PTMs). Extracellular protein glycosylation, in particular N- and mucin-type O-glycosylation, plays pivotal roles in a number of biophysical and biochemical processes, such as protein folding and stability, cell adhesion, signaling, and protection. As such, aberrant glycosylation is implicated in a variety of diseases, including cancer.

View Article and Find Full Text PDF

Motif-driven dynamics and intermediates during unfolding of multi-domain BphC enzyme.

J Chem Phys

January 2025

Research and Development Center, Beijing Genetech Pharmaceutical Co., Ltd., Beijing 102200, People's Republic of China.

Understanding the folding mechanisms of multi-domain proteins is crucial for gaining insights into protein folding dynamics. The BphC enzyme, a key player in the degradation of polychlorinated biphenyls consists of eight identical subunits, each containing two domains, with each domain comprising two "βαβββ" motifs. In this study, we employed high-temperature molecular dynamics simulations to systematically analyze the unfolding dynamics of a BphC subunit.

View Article and Find Full Text PDF

Nanoscale water behavior and its impact on adsorption: A case study with CNTs and diclofenac.

J Chem Phys

January 2025

Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas, Brazil.

Water is a fundamental component of life, playing a critical role in regulating metabolic processes and facilitating the dissolution and transport of essential molecules. However, emerging contaminants, such as pharmaceuticals, pose significant challenges to water quality and safety. Nanomaterial-based technologies emerge as a promising solution for removing those contaminants from water.

View Article and Find Full Text PDF

Hemophilia A (HA) is an inherited condition that is characterized by a lack of coagulation factor VIII (FVIII), which is needed for blood clotting. To produce recombinant factor VIII (rFVIII) for treatment, innovative methods are required. This study presents a thorough examination of the genetic engineering and biotechnological methods that are essential for the production of this complex process.

View Article and Find Full Text PDF

Chromosome-level reference genome and annotation of the Arctic fish Anisarchus medius.

Sci Data

January 2025

State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

Anisarchus medius (Reinhardt, 1837) is a widely distributed Arctic fish, serving as an indicator of climate change impacts on coastal Arctic ecosystems. This study presents a chromosome-level genome assembly for A. medius using PacBio sequencing and Hi-C technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!