Machine learning algorithms have been increasingly applied in drug development due to their efficiency and effectiveness. Machine learning-based drug repurposing can contribute to the identification of novel therapeutic applications for drugs with other indications. The current study used a trained machine learning model to screen a vast chemical library for new JAK2 inhibitors, the biological activities of which were reported. Reference JAK2 inhibitors, comprising 1911 compounds, have experimentally determined IC values. To generate the input to the machine learning model, reference compounds were subjected to RDKit, a cheminformatic toolkit, to extract molecular descriptors. A Random Forest Regression model from the Scikit-learn machine learning library was applied to obtain a predictive regression model and to analyze each molecular descriptor's role in determining IC values in the reference data set. Then, IC values of the library compounds, comprised of 1,576,903 compounds, were predicted using the generated regression model. Interestingly, some compounds that exhibit high IC values from the prediction were reported to possess JAK inhibition activity, which indicates the limitations of the prediction model. To confirm the JAK2 inhibition activity of predicted compounds, molecular docking and molecular dynamics simulation were carried out with the JAK inhibitor reference compound, tofacitinib. The binding affinity of docked compounds in the active region of JAK2 was also analyzed by the gmxMMPBSA approach. Furthermore, experimental validation confirmed the results from the computational analysis. Results showed highly comparable outcomes concerning tofacitinib. Conclusively, the machine learning model can efficiently improve the virtual screening of drugs and drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.3c01090 | DOI Listing |
Asian Pac J Cancer Prev
January 2025
Department of Physics, Faculty of Sciences, Arak University, Arak, Iran.
Objective: Addressing the rising cancer rates through timely diagnosis and treatment is crucial. Additionally, cancer survivors need to understand the potential risk of developing secondary cancer (SC), which can be influenced by several factors including treatment modalities, lifestyle choices, and habits such as smoking and alcohol consumption. This study aims to establish a novel relationship using linear regression models between dose and the risk of SC, comparing different prediction methods for lung, colon, and breast cancer.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Department of Nuclear Medicine, Busan Paik Hospital, University of Inje College of Medicine, Busan, Republic of Korea.
Objective: This study aimed to develop a simple machine-learning model incorporating lymph node metastasis status with F-18 Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and clinical information for predicting regional lymph node metastasis in patients with colon cancer.
Methods: This retrospective study included 193 patients diagnosed with colon cancer between January 2014 and December 2017. All patients underwent F-18 FDG PET/CT and blood test before surgery.
Geroscience
January 2025
State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
Biological brain age is a brain-predicted age using machine learning to indicate brain health and its associated conditions. The presence of an older predicted brain age relative to the actual chronological age is indicative of accelerated aging processes. Consequently, the disparity between the brain's chronological age and its predicted age (brain-age gap) and the factors influencing this disparity provide critical insights into cerebral health dynamics during aging.
View Article and Find Full Text PDFBioDrugs
January 2025
Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
Background: With the expiration of patents for multiple biotherapeutics, biosimilars are gaining traction globally as cost-effective alternatives to the original products. Glycosylation, a critical quality attribute, makes glycosimilarity assessment pivotal for biosimilar development. Given the complexity of glycoanalytical profiles, assessing glycosimilarity is nontrivial.
View Article and Find Full Text PDFPurpose: This brief report aims to summarize and discuss the methodologies of eXplainable Artificial Intelligence (XAI) and their potential applications in surgery.
Methods: We briefly introduce explainability methods, including global and individual explanatory features, methods for imaging data and time series, as well as similarity classification, and unraveled rules and laws.
Results: Given the increasing interest in artificial intelligence within the surgical field, we emphasize the critical importance of transparency and interpretability in the outputs of applied models.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!