A neural code for time and space in the human brain.

Cell Rep

Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA; Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel. Electronic address:

Published: November 2023

Time and space are primary dimensions of human experience. Separate lines of investigation have identified neural correlates of time and space, yet little is known about how these representations converge during self-guided experience. Here, 10 subjects with intracranially implanted microelectrodes play a timed, virtual navigation game featuring object search and retrieval tasks separated by fixed delays. Time cells and place cells activate in parallel during timed navigation intervals, whereas a separate time cell sequence spans inter-task delays. The prevalence, firing rates, and behavioral coding strengths of time cells and place cells are indistinguishable-yet time cells selectively remap between search and retrieval tasks, while place cell responses remain stable. Thus, the brain can represent time and space as overlapping but dissociable dimensions. Time cells and place cells may constitute a biological basis for the cognitive map of spatiotemporal context onto which memories are written.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2023.113238DOI Listing

Publication Analysis

Top Keywords

time space
16
time cells
16
cells place
12
place cells
12
time
9
search retrieval
8
retrieval tasks
8
cells
7
neural code
4
code time
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!