A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intermediate gray matter interneurons in the lumbar spinal cord play a critical and necessary role in coordinated locomotion. | LitMetric

Locomotion is a complex task involving excitatory and inhibitory circuitry in spinal gray matter. While genetic knockouts examine the function of individual spinal interneuron (SpIN) subtypes, the phenotype of combined SpIN loss remains to be explored. We modified a kainic acid lesion to damage intermediate gray matter (laminae V-VIII) in the lumbar spinal enlargement (spinal L2-L4) in female rats. A thorough, tailored behavioral evaluation revealed deficits in gross hindlimb function, skilled walking, coordination, balance and gait two weeks post-injury. Using a Random Forest algorithm, we combined these behavioral assessments into a highly predictive binary classification system that strongly correlated with structural deficits in the rostro-caudal axis. Machine-learning quantification confirmed interneuronal damage to laminae V-VIII in spinal L2-L4 correlates with hindlimb dysfunction. White matter alterations and lower motoneuron loss were not observed with this KA lesion. Animals did not regain lost sensorimotor function three months after injury, indicating that natural recovery mechanisms of the spinal cord cannot compensate for loss of laminae V-VIII neurons. As gray matter damage accounts for neurological/walking dysfunction in instances of spinal cord injury affecting the cervical or lumbar enlargement, this research lays the groundwork for new neuroregenerative therapies to replace these lost neuronal pools vital to sensorimotor function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617729PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291740PLOS

Publication Analysis

Top Keywords

gray matter
16
spinal cord
12
laminae v-viii
12
intermediate gray
8
spinal
8
lumbar spinal
8
spinal l2-l4
8
sensorimotor function
8
matter
5
matter interneurons
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!