Block copolymers have gained tremendous interest from the scientific community in the last two decades. These macromolecular architectures indeed constitute ideal nanostructured precursors for the generation of nanoporous materials meant for various high added value applications. The parallel emergence of controlled polymerization techniques has notably enabled to finely control their molecular features to confer them with unique structural and physicochemical properties, such as low dispersity values (), well-defined volume fractions, and controlled functionality. The nanostructuration and ordering of diblock or triblock copolymers, which can be achieved through various experimental techniques, including channel die processing, solvent vapor or thermal annealing, nonsolvent-induced phase separation or concomitant self-assembly, and nonsolvent-induced phase separation, allows for the preparation of orientated microphase-separated copolymers whose morphology is dictated by three main factors, i.e., Flory-Huggins interaction parameter between constitutive blocks, volume fraction of the blocks, and polymerization degree. This review article provides an overview of the actual state of the art regarding the preparation of functional nanoporous materials from either diblock or triblock copolymers. It will also highlight the major applications of such peculiar materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c09859 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Angew Chem Int Ed Engl
December 2024
Universite Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5128, Laboratoire CP2 M, Equipe PCM, 69616, Villeurbanne, CEDEX, France.
Angew Chem Int Ed Engl
January 2025
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
Copolymerization stands as a versatile and potent method for tailoring polymer properties by adjusting structural unit composition and sequence distribution. However, achieving sequence-controlled copolymerization in a one-step and one-pot process remains challenging. This study introduces a solvent-dependent sequence-controlled copolymerization strategy to produce block and statistical copolyesters from 4-phenyl-2-oxabicyclo[2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications; College of Chemistry and Materials Science, Huaibei Normal University Huaibei, Anhui, 235000, P. R. China.
The precise preparation of hierarchical micelles is a fundamental challenge in modern materials science and chemistry. Herein, poly(di-n-hexylfluorene)-block-poly(3-tetraethylene glycol thiophene) (poly(1-b-2)) diblock copolymers and polyfluorene-block-polythiophene-block-poly(phenyl isocyanide) triblock copolymers were synthesized using a one-pot process via the sequential addition of corresponding monomers using a Ni(II) complex as a single catalyst for living/controlled polymerization. The crystallization-driven self-assembly of amphiphilic conjugated poly(1-b-2) led to the formation of nanofibers with controlled lengths and narrow dispersity.
View Article and Find Full Text PDFMol Pharm
November 2024
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States.
The blood-brain barrier (BBB) is a highly restrictive barrier at the interface between the brain and the vascular system. Even under BBB dysfunction, it is extremely difficult to deliver therapies across the barrier, limiting the options for treatment of neurological injuries and disorders. To circumvent these challenges, there is interest in developing therapies that directly engage with the damaged BBB to restore its function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!