In this study, we conducted the synthesis and diagnosis of compound denoted as 1A3, specifically, (2E,4E,9E,11E)-7-chloro-2,12-diphenyltrideca-2,4,9,11-tetraene-6,8-dione. The photoluminescent and UV-vis spectral properties of this compound are investigated. The compound is dissolved in both chloroform and DMF for analysis purposes. Compound 1A3's nonlinear optical (NLO) characteristics when dissolved in DMF, are extensively studied through a series of experiments including diffraction patterns (DPs) and Z-scan. The optical limiting (OL) property of the 1A3 compound is tested and a threshold value of 12.4 mW at the wavelength 473 nm is obtained. Additionally, we explored its potential for all-optical switching utilizing two low-power visible laser beams. Notably, we achieved a significant nonlinear refractive index (NLRI) reaching up to 5.921 x 10 m/W. To analyze the obtained diffraction patterns, we employed the Fresnel-Kirchhoff integral equation and conducted meticulous simulations. The numerical outcomes showed satisfactory agreement with the experimental observations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-023-03475-xDOI Listing

Publication Analysis

Top Keywords

nonlinear optical
8
all-optical switching
8
laser beams
8
diffraction patterns
8
compound
5
curcumin analogue
4
analogue spectral
4
spectral nonlinear
4
optical properties
4
properties all-optical
4

Similar Publications

An ultrafast algorithm for ultrafast time-resolved coherent Raman spectroscopy.

Commun Chem

January 2025

Energy & Materials Transition, Netherlands Organization for Applied Scientific Research (TNO), Urmonderbaan 22, Geleen, 6167RD, The Netherlands.

Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis.

View Article and Find Full Text PDF

We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.

View Article and Find Full Text PDF

Supercontinuum generation in scintillator crystals.

Sci Rep

January 2025

Laser Research Center, Vilnius University, Saulėtekio Avenue 10, LT-10223, Vilnius, Lithuania.

We present a comparative experimental study of supercontinuum generation in undoped scintillator crystals: bismuth germanate (BGO), yttrium orthosilicate (YSO), lutetium oxyorthosilicate (LSO), lutetium yttrium oxyorthosilicate (LYSO) and gadolinium gallium garnet (GGG), pumped by 180 fs fundamental harmonic pulses of an amplified Yb:KGW laser. In addition to these materials, experiments in yttrium aluminium garnet (YAG), potassium gadolinium tungstate (KGW) and lithium tantalate (LT) were performed under identical experimental settings (focusing geometry and sample thickness), which served for straightforward comparison of supercontinuum generation performances. The threshold and optimal (that produces optimized red-shifted spectral extent) pump pulse energies for supercontinuum generation were evaluated from detailed measurements of spectral broadening dynamics.

View Article and Find Full Text PDF

Finding novel efficient nonlinear optical materials with large second-order nonlinearity for the UV spectral range remains a formidable challenge, especially for silicate systems. Using a high-temperature solid reaction in a tight vacuum environment, two ultraviolet nonlinear optical materials with a moderate second harmonic generation (SHG) response have been created: PbSiOC and PbCaSiO. The SHG values they computed are roughly 2.

View Article and Find Full Text PDF

Charge transport in materials has an impact on a wide range of devices based on semiconductor, battery, or superconductor technology. Charge transport in sliding charge density waves (CDW) differs from all others in that the atomic lattice is directly involved in the transport process. To obtain an overall picture of the structural changes associated to the collective transport, the large coherent x-ray beam generated by an x-ray free-electron laser (XFEL) source was used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!