Objective: To explore the genetic basis for a fetus with multiple malformations.
Methods: Clinical data of the fetus was collected, Amniotic fluid sample of the fetus was subjected to conventional G-banded karyotyping, low-depth whole genome copy number variants detection and whole exome sequencing (WES). Candidate variant was verified by Sanger sequencing of the fetus and its parents.
Results: Prenatal ultrasound scan at 21 gestational weeks had revealed increased nuchal thickness (9.0 mm), enhanced echos of bilateral renal parenchyma, seroperitoneum, left pleural effusion and right displacement of the heart. The mother had a previous history of terminated pregnancy for multiple fetal anomalies. No abnormality was found by conventional karyotyping and CNV analysis, though WES revealed that the fetus has harbored a de novo heterozygous c.607C>T (p.Arg203Trp) variant of the ACS1 gene (NM_018026.3), and the result was validated by Sanger sequencing.
Conclusion: Through WES and prenatal ultrasonography, the fetus was diagnosed with Schuurs-Hoeijmakers syndrome due to the heterozygous c.607C>T (p.Arg203Trp) variant of the PACS1 gene (NM_018026.3). For fetuses with multiple malformations, WES can help to reveal the genetic etiology when CNV result is negative.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3760/cma.j.cn511374-20210910-00739 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!