Tryptophan hydroxylases catalyze the first and rate-limiting step in the biosynthesis of serotonin, a well-known neurotransmitter that plays an important role in multiple physiological functions. A reduction of serotonin levels, especially in the brain, can cause dysregulation leading to depression or insomnia. In contrast, overproduction of peripheral serotonin is associated with symptoms like carcinoid syndrome and pulmonary arterial hypertension. Recently, we developed a class of TPH inhibitors based on xanthine-benzimidazoles, characterized by a tripartite-binding mode spanning the binding sites of the cosubstrate pterin and the substrate tryptophan and by chelation of the catalytic iron ion. Herein, we describe the structure-based development of a second generation of xanthine-imidiazopyridines and -imidazothiazoles designed to inhibit TPH1 in the periphery while preventing the interaction with TPH2 in the brain. Lead compound (TPT-004) shows superior pharmacokinetic and pharmacodynamic properties as well as efficacy in preclinical models of peripheral serotonin attenuation and colorectal tumor growth.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.3c01454DOI Listing

Publication Analysis

Top Keywords

peripheral serotonin
8
structure-based design
4
design xanthine-imidazopyridines
4
xanthine-imidazopyridines -imidazothiazoles
4
-imidazothiazoles highly
4
highly potent
4
potent vivo
4
vivo efficacious
4
efficacious tryptophan
4
tryptophan hydroxylase
4

Similar Publications

Background: Fluoxetine, a serotonin reuptake inhibitor antidepressant, raises extracellular serotonin levels and promotes angiogenesis and neurogenesis. Numerous animal models have shown its beneficial effects on recovery from peripheral nerve injury.

Purpose: The primary objective of this study was to analyze the influence of fluoxetine on the sensory-motor function recovery of the sciatic nerve in Wistar rats after axonotmesis.

View Article and Find Full Text PDF

This study aimed to investigate the effects of linden honey in maintaining the stability of peripheral serotonergic system in the psychosocially stressed rats. In this experiment we examined concentration of serotonin (5-HT) in Serbian linden honey, as well as concentrations of 5-HT and MAO A activity in the blood of chronically stressed rats treated with linden honey. The investigated parameters were quantified using HPLC method with electrochemical detector, HPLC method with a fluorescent detector, and assay of enzyme activities.

View Article and Find Full Text PDF

Selective serotonin reuptake inhibitor correlates with decreased bone mineral density and impedes orthodontic tooth movement. The present study aimed to examine the effects of fluoxetine on osteoclast differentiation and function. Human peripheral blood mononuclear cells (hPBMCs) and murine RAW264.

View Article and Find Full Text PDF

This research work was designed to develop efficient Diosgenin (DGN) loaded biodegradable nanoparticles (DGN-NPs) for treating rheumatoid arthritis. The DGN-NPs were synthesized by ionic-gelation method using chitosan as a biodegradable polymer and in-vitro release study was performed followed by kinetics study. DGN-NPs had an average size of 290 nm, zeta potential of +11.

View Article and Find Full Text PDF

Serotonin exerts numerous neurological and physiological actions in the brain and in the periphery. It is generated by two different tryptophan hydroxylase enzymes, TPH1 and TPH2, in the periphery and in the brain, respectively, which are members of the aromatic amino acid hydroxylase (AAAH) family together with phenylalanine hydroxylase (PAH), degrading phenylalanine, and tyrosine hydroxylase (TH), generating dopamine. In this study, we show that the co-chaperone DNAJC12 is downregulated in serotonergic neurons in the brain of mice lacking TPH2 and thereby central serotonin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!