Prediction of cell-cell communication patterns of dorsal root ganglion cells: single-cell RNA sequencing data analysis.

Neural Regen Res

National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.

Published: June 2024

Dorsal root ganglion neurons transmit peripheral somatic information to the central nervous system, and dorsal root ganglion neuron excitability affects pain perception. Dorsal root ganglion stimulation is a new approach for managing pain sensation. Knowledge of the cell-cell communication among dorsal root ganglion cells may help in the development of new pain and itch management strategies. Here, we used the single-cell RNA-sequencing (scRNA-seq) database to investigate intercellular communication networks among dorsal root ganglion cells. We collected scRNA-seq data from six samples from three studies, yielding data on a total of 17,766 cells. Based on genetic profiles, we identified satellite glial cells, Schwann cells, neurons, vascular endothelial cells, immune cells, fibroblasts, and vascular smooth muscle cells. Further analysis revealed that eight types of dorsal root ganglion neurons mediated proprioceptive, itch, touch, mechanical, heat, and cold sensations. Moreover, we predicted several distinct forms of intercellular communication among dorsal root ganglion cells, including cell-cell contact, secreted signals, extracellular matrix, and neurotransmitter-mediated signals. The data mining predicted that -positive neurons robustly express the genes encoding the adenosine Adora2b (A2B) receptor and glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRα-1). Our immunohistochemistry results confirmed the coexpression of the A2B receptor and GFRα-1. Intrathecal injection of the A2B receptor antagonist PSB-603 effectively prevented histamine-induced scratching behaviour in a dose-dependent manner. Our results demonstrate the involvement of the A2B receptor in the modulation of itch sensation. Furthermore, our findings provide insight into dorsal root ganglion cell-cell communication patterns and mechanisms. Our results should contribute to the development of new strategies for the regulation of dorsal root ganglion excitability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467928PMC
http://dx.doi.org/10.4103/1673-5374.384067DOI Listing

Publication Analysis

Top Keywords

dorsal root
40
root ganglion
40
ganglion cells
16
a2b receptor
16
cell-cell communication
12
dorsal
10
root
10
ganglion
10
cells
10
communication patterns
8

Similar Publications

Public Health.

Alzheimers Dement

December 2024

University of Oxford, Oxford, United Kingdom.

Background: Early adversity has been reported as a risk factor for dementia. Adverse maternal control (MC) during childhood is believed to impact neural developmental pathways. Here we studied the associations between adverse MC and the volume of the dorsal striatum in older adults given evidence from the childhood adversity literature of structural reductions and altered reward processing.

View Article and Find Full Text PDF

Cancer pain is one of the most common symptoms in patients with advanced cancer. In this study, we aimed to investigate the effects of the -related gene C (MrgC) receptors on bone cancer pain. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured after the inoculation of Walker 256 mammary gland carcinoma cells into the tibia of adult Sprague-Dawley rats.

View Article and Find Full Text PDF

Cisplatin and oxaliplatin are Pt(II) anticancer agents that are used to treat several cancers, usually in combination with other drugs. Their efficacy is diminished by dose-limiting peripheral neuropathy (PN) that affects ∼70% of patients. PN is caused by selective accumulation of the platinum drugs in the dorsal root ganglia (DRG), which overexpress transporters for cisplatin and oxaliplatin.

View Article and Find Full Text PDF

[Effect of somatic afferent nerve-visceral nerve circuit in the regulation of the gastrointestinal function with acupuncture and moxibustion].

Zhongguo Zhen Jiu

January 2025

Institute of Acupuncture and Moxibustion, Shandong University of TCM, Jinan 250355, China; Institute of Systematic Chinese Medicine, Shandong University of TCM, Jinan 250355, China.

The distribution of the common acupoints of acupuncture-moxibustion for gastrointestinal diseases conforms to the rule of the segmental homology of somatic afferent nerve-visceral nerve circuit at the spinal cord level. Acupuncture-moxibustion regulates the gastrointestinal function through the nerve-endocrine-immune system, and especially depending on the integrity of the structure and function of nervous system. The somatic afferent nerve-visceral nerve circuit plays an important role in the process of acupuncture and moxibustion for regulating the gastrointestinal function.

View Article and Find Full Text PDF

Introduction: It is reasonable to assume that lumbar spinal stenosis (LSS) affects the cauda nerve roots also at night.

Research Question: Does microsurgical decompression influence sleep quality and position?

Materials And Methods: A study nurse interviewed 140 patients scheduled for LSS decompression using the Pittsburgh Sleep Quality Index (PSQI), Spinal Stenosis Measure (SSM), Numeric Rating Scale (NRS) for back and leg pain, Douleur Neuropathique (DN4), and Charlson Comorbidity Index. Epidemiologic and MRI data were collected along with self-reported rankings of preferred sleep positions (prone, supine, side, and fetal).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!