Background/aim: Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent genetic disorder primarily caused by mutations in Pkd1 (PC1), which account for the majority of ADPKD cases. These mutations contribute to the formation of cysts in the kidneys and other organs, ultimately leading to renal failure. Unfortunately, there are currently no available preventive treatments for this disease.
Materials And Methods: In this study, we utilized Pkd1-knockdown mice and cells to investigate the potential involvement of O-GlcNAcylation in the progression of PKD. Additionally, we examined the effects of thiamet G, an inhibitor of O-GlcNAcase (OGA), on PKD mice.
Results: Our findings indicate that both O-GlcNAcylation and OGT (O-GlcNAc transferase) were downregulated in the renal tissues of Pkd1-silenced mice. Furthermore, O-GlcNAcylation was shown to regulate the stability and function of the C-terminal cytoplasmic tail (CTT) of PC1. Treatment of PKD mice with thiamet G resulted in a reduction of renal cytogenesis in these animals.
Conclusion: These results highlight the unique role of O-GlcNAcylation in the development of cyst formation in PKD and propose it as a potential therapeutic target for the treatment of PKD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621443 | PMC |
http://dx.doi.org/10.21873/invivo.13360 | DOI Listing |
Am J Kidney Dis
December 2024
Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre de référence MARHEA, CHRU Brest, Brest, France; Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium. Electronic address:
Rationale & Objective: Monoallelic predicted Loss-of-Function (pLoF) variants in IFT140 have recently been associated with an autosomal dominant polycystic kidney disease (ADPKD)-like phenotype. This study sought to enhance the characterization of this phenotype.
Study Design: Case series.
Clin Genet
December 2024
Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
Renal ciliopathies are a genetically and phenotypically heterogeneous group of diseases characterized by cystic and dysplastic kidneys. The aim of this study was to investigate the correlation between genetic changes that cause renal ciliopathies and phenotypic outcomes. The study group consisted of 137 patients diagnosed with renal ciliopathy disease.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Medicine, Service of Nephrology, Fribourg State Hospital, Fribourg, Switzerland.
Aim Of The Study: Tuberous sclerosis complex (TSC) is a genetic and multisystemic disorder that affects between 1/6'000 and 1/10'000 of newborns. Clinical criteria and/or genetic analysis establish the diagnosis. The mechanistic target of rapamycin (mTOR) inhibitors everolimus or sirolimus reduce the severity of several TSC-related clinical traits.
View Article and Find Full Text PDFNAR Mol Med
October 2024
Department of Biology, Tufts University, 200 Boston Ave., Medford, MA 02155, USA.
H-DNA is an intramolecular DNA triplex formed by homopurine/homopyrimidine mirror repeats. Since its discovery, the field has advanced from characterizing the structure to discovering its existence and role . H-DNA interacts with cellular machinery in unique ways, stalling DNA and RNA polymerases and causing genome instability.
View Article and Find Full Text PDFFront Pediatr
December 2024
Department of Internal Medicine, North China University of Science and Technology, Tangshan, China.
Background: Autosomal dominant tubulointerstitial kidney disease (ADTKD) caused by -causing pathogenic variants (ADTKD-) is a rare group of heritable diseases. ADTKD- often manifests in childhood with symptoms such as mild hypotension, chronic kidney disease, hyperkalemia, anemia, and acidosis. The diagnosis of ADTKD- remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!