In the presence of cofactors, tau protein can form amyloid deposits in the brain which are implicated in many neurodegenerative disorders. Heparin, lipids, and RNA are used to recreate tau aggregates in vitro from recombinant protein. However, the mechanism of interaction of these cofactors and the interactions between cofactors and tau are poorly understood. Herein, we use tip-enhanced Raman spectroscopy (TERS) to visualize the spatial distribution of adenine, protein secondary structure, and amino acids (arginine, lysine and histidine) in single polyadenosine (polyA)-induced tau fibrils with nanoscale spatial resolution (<10-20 nm). Based on reference unenhanced and surface-enhanced Raman spectra, we show that the polyA anionic cofactor is incorporated in the fibril structure and seems to be superficial to the β-sheet core, but nonetheless enveloped within the random-coiled fuzzy coat. TERS images also prove the colocalization of positively charged arginine, lysine, and histidine amino acids and negatively charged polyA, which constitutes an important step forward to better comprehend the action of RNA cofactors in the mechanism of formation of toxic tau fibrils. TERS appears as a powerful technique for the identification of cofactors in individual tau fibrils and their mode of interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202314369DOI Listing

Publication Analysis

Top Keywords

fibrils nanoscale
8
tip-enhanced raman
8
raman spectroscopy
8
cofactors tau
8
chemical imaging
4
imaging rna-tau
4
rna-tau amyloid
4
amyloid fibrils
4
nanoscale tip-enhanced
4
spectroscopy presence
4

Similar Publications

Cellulose Elementary Fibrils as Deagglomerated Binder for High-Mass-Loading Lithium Battery Electrodes.

Nanomicro Lett

January 2025

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.

Amidst the ever-growing interest in high-mass-loading Li battery electrodes, a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways. Here, we propose cellulose elementary fibrils (CEFs) as a class of deagglomerated binder for high-mass-loading electrodes. Derived from natural wood, CEF represents the most fundamental unit of cellulose with nanoscale diameter.

View Article and Find Full Text PDF

Aging-Induced Discrepant Response of Fracture Healing is Initiated from the Organization and Mineralization of Collagen Fibrils in Callus.

ACS Biomater Sci Eng

January 2025

Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.

Fracture healing is a complex process during which the bone restores its structural and mechanical integrity. Collagen networks and minerals are the fundamental components to rebuild the bone matrix in callus. It has been recognized that bone quality could be impaired during aging.

View Article and Find Full Text PDF

Controlled ligation and elongation of uniformly truncated amyloid nanofibrils.

Nanoscale

January 2025

Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.

This study investigates the production and inter-fibril interactions of uniformly truncated amyloid nanofibrils. By varying extrusion cycles (0, 50, and 100) and using carbonate filters with 100 nm and 200 nm pore sizes, precise fibril length control was achieved. Atomic force microscopy (AFM) confirmed that the mean length of the truncated fibrils corresponded to the respective pore size as extrusion cycles increased.

View Article and Find Full Text PDF

We here explore confinement-induced assembly of whey protein nanofibrils (PNFs) into microscale fibers using microfocused synchrotron X-ray scattering. Solvent evaporation aligns the PNFs into anisotropic fibers, and the process is followed in situ by scattering experiments within a droplet of PNF dispersion. We find an optimal temperature at which the order parameter of the protein fiber is maximized, suggesting that the degree of order results from a balance between the time scales of the forced alignment and the rotational diffusion of the fibrils.

View Article and Find Full Text PDF

Heterotypic Seeding Generates Mixed Amyloid Polymorphs.

Small Sci

September 2024

Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35487, USA.

Aggregation of the amyloid β (Aβ) peptide into fibrils represents one of the major biochemical pathways underlying the development of Alzheimer's disease (AD). Extensive studies have been carried out to understand the role of fibrillar seeds on the overall kinetics of amyloid aggregation. However, the precise effect of seeds that are structurally or sequentially different from Aβ on the structure of the resulting amyloid aggregates is yet to be fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!