Extracellular vesicles (EVs) are becoming increasingly important in liquid biopsy for cancer because they contain multiple biomarkers, including proteins and RNAs, and circulate throughout the body. Cancer cell-derived EVs are highly heterogeneous, and multiplexed biomarker detection techniques are required to improve the accuracy of diagnosis. In addition, in situ EV biomarker detection increases the efficiency of the detection process because EVs are difficult to handle. In this study, in situ simultaneous detection of EV surface proteins, programmed cell death-ligand 1 (PD-L1), and internal miRNA-21 (miR-21) analyzed by conventional flow cytometry was developed for a breast cancer liquid biopsy. However, the majority of EVs were not recognized by flow cytometry for biomarker detection because the size of EVs was below the detectable size range of the flow cytometer. To solve this problem, the formation of EV clusters was induced by 1,2-distearoyl--glycero-3-phosphoethanolamine (DSPE)-polyethylene glycol-DSPE during biomarker detection. Consequently, both PD-L1 and miR-21 detection signals from cancer cell-derived EVs were drastically increased, making them distinguishable from normal cell-derived EVs. The in situ simultaneous cancer biomarker detection from EV clusters analyzed by flow cytometry contributes to an increase in the sensitivity and accuracy of the EV-based liquid biopsy for cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.3c01459DOI Listing

Publication Analysis

Top Keywords

biomarker detection
20
flow cytometry
16
situ simultaneous
12
liquid biopsy
12
cell-derived evs
12
detection
9
simultaneous detection
8
detection surface
8
extracellular vesicles
8
biopsy cancer
8

Similar Publications

Inflammation and Immune Escape in Ovarian Cancer: Pathways and Therapeutic Opportunities.

J Inflamm Res

January 2025

Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China.

Ovarian cancer (OC) remains one of the most lethal gynecological malignancies, largely due to its late-stage diagnosis and high recurrence rates. Chronic inflammation is a critical driver of OC progression, contributing to immune evasion, tumor growth, and metastasis. Inflammatory cytokines, including IL-6, TNF-α, and IL-8, as well as key signaling pathways such as nuclear factor kappa B (NF-kB) and signal transducer and activator of transcription 3 (STAT3), are upregulated in OC, promoting a tumor-promoting environment.

View Article and Find Full Text PDF

Objective: This study evaluated the diagnostic value of plasma Neutrophil extracellular traps (NETs) levels and the index of cardiac electrophysiological balance (iCEB) in identifying silent myocardial ischemia (SMI) in maintenance hemodialysis (MHD) patients.

Methods: This cross-sectional observational study involved patients receiving MHD treatment. Data were collected on coronary angiography performed in our hospital from February 2023 to February 2024.

View Article and Find Full Text PDF

Tuberculous meningitis diagnosis and treatment: classic approaches and high-throughput pathways.

Front Immunol

January 2025

Rehabilitation Medicine Department, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University (The First Hospital of Changsha, Changsha, China.

Tuberculous meningitis (TBM), a severe form of non-purulent meningitis caused by (Mtb), is the most critical extrapulmonary tuberculosis (TB) manifestation, with a 30-40% mortality rate despite available treatment. The absence of distinctive clinical symptoms and effective diagnostic tools complicates early detection. Recent advancements in nucleic acid detection, genomics, metabolomics, and proteomics have led to novel diagnostic approaches, improving sensitivity and specificity.

View Article and Find Full Text PDF

A novel machine learning based framework for developing composite digital biomarkers of disease progression.

Front Digit Health

January 2025

Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ, United States.

Background: Current methods of measuring disease progression of neurodegenerative disorders, including Parkinson's disease (PD), largely rely on composite clinical rating scales, which are prone to subjective biases and lack the sensitivity to detect progression signals in a timely manner. Digital health technology (DHT)-derived measures offer potential solutions to provide objective, precise, and sensitive measures that address these limitations. However, the complexity of DHT datasets and the potential to derive numerous digital features that were not previously possible to measure pose challenges, including in selection of the most important digital features and construction of composite digital biomarkers.

View Article and Find Full Text PDF

Introduction: As a hallmark feature of amyotrophic lateral sclerosis (ALS), bulbar involvement significantly impacts psychosocial, emotional, and physical health. A validated objective marker is however lacking to characterize and phenotype bulbar involvement, positing a major barrier to early detection, progress monitoring, and tailored care. This study aimed to bridge this gap by constructing a multiplex functional mandibular muscle network to provide a novel objective measurement tool of bulbar involvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!