Electronic health records (EHRs) have been increasingly adopted in clinical practices across the United States, providing a primary source of data for clinical research, particularly observational cohort studies. EHRs are a high-yield, low-maintenance source of longitudinal real-world data for large patient populations and provide a wealth of information and clinical contexts that are useful for clinical research and translation into practice. Despite these strengths, it is important to recognize the multiple limitations and challenges related to the use of EHR data in clinical research. Missing data are a major source of error and biases and can affect the representativeness of the cohort of interest, as well as the accuracy of the outcomes and exposures. Here, we aim to provide a critical understanding of the types of data available in EHRs and describe the impact of data heterogeneity, quality, and generalizability, which should be evaluated prior to and during the analysis of EHR data. We also identify challenges pertaining to data quality, including errors and biases, and examine potential sources of such biases and errors. Finally, we discuss approaches to mitigate and remediate these limitations. A proactive approach to addressing these issues can help ensure the integrity and quality of EHR data and the appropriateness of their use in clinical studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938158 | PMC |
http://dx.doi.org/10.5009/gnl230272 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!