In the preceding paper [Havel, H. A., Kauffman, E. W., Plaisted, S. M., & Brems, D. N. (1986) Biochemistry (preceding paper in this issue)], an associated intermediate was shown to be highly populated during the equilibrium denaturation of bovine growth hormone. In this paper, we describe its partial characterization and propose a mechanism for association. The associated equilibrium intermediate is populated under conditions that induce partial denaturation and at protein concentrations greater than 0.2 mg/mL. The remaining nativelike helical structure present in the partially denatured species is implicated in the mechanism of association as demonstrated by similar concentration dependencies and thermal stabilities of the helix and the associated equilibrium intermediate. Furthermore, it is suggested that a putative amphiphilic helix from residues 110-127 plays a critical role in the association as demonstrated by a diminution of the associated equilibrium intermediate when mixed with the peptide fragment 96-133. A model is proposed to account for these results in which partial denaturation exposes the segment of the protein corresponding to the hydrophobic face of the putative amphiphilic helix 110-127. This metastable form is the species from which association occurs. Association is stabilized by the hydrophobic interactions resulting from intermolecular packing of the lipophilic faces of the helices. The implications of these results to protein folding studies are described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00369a030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!