Both adults and children learn through feedback which environmental events and choices are associated with higher probability of reward, an ability thought to be supported by the development of fronto-striatal reward circuits. Recent developmental studies have applied computational models of reward learning to investigate such learning in children. However, tasks and measures effective for assaying the cascade of reward-learning neural processes in children have been limited. Using a child-version of a probabilistic reward-learning task while recording event-related-potential (ERP) measures of electrical brain activity, this study examined key processes of reward learning in preadolescents (8-12 years old; n=30), namely: (1) reward-feedback sensitivity, as measured by the early-latency, reward-related, frontal ERP positivity, (2) rapid attentional shifting of processing toward favored visual stimuli, as measured by the N2pc component, and (3) longer-latency attention-related responses to reward feedback as a function of behavioral strategies (i.e., Win-Stay-Lose-Shift), as measured by the central-parietal P300. Consistent with our prior work in adults, the behavioral findings indicate preadolescents can learn stimulus-reward outcome associations, but at varying levels of performance. Neurally, poor preadolescent learners (those with slower learning rates) showed greater reward-related positivity amplitudes relative to good learners, suggesting greater reward-feedback sensitivity. We also found attention shifting towards to-be-chosen stimuli, as evidenced by the N2pc, but not to more highly rewarded stimuli as we have observed in adults. Lastly, we found the behavioral learning strategy (i.e., Win-Stay-Lose-Shift) reflected by the feedback-elicited parietal P300. These findings provide novel insights into the key neural processes underlying reinforcement learning in preadolescents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614771 | PMC |
http://dx.doi.org/10.1101/2023.10.16.562326 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!