A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influenza A virus resistance to 4'-fluorouridine coincides with viral attenuation and . | LitMetric

AI Article Synopsis

  • The emergence of resistance in influenza viruses to existing antivirals highlights the need for new treatments, prompting research on the nucleoside analog 4'-fluorouridine (4'-FlU) that shows effectiveness against various strains in animal models.
  • In studying a resistant strain of the H1N1 virus, researchers found multiple mutations that allowed the virus to moderately evade the effects of 4'-FlU despite experiencing fitness costs in cell cultures and mouse models.
  • Administering 4'-FlU at both low and high doses effectively reduced viral loads and improved survival in treated mice, while in ferrets, the drug limited the spread of resistant variants, indicating its potential in overcoming antiviral resistance.

Article Abstract

Unlabelled: Pre-existing or rapidly emerging resistance of influenza viruses to approved antivirals makes the development of novel therapeutics to mitigate seasonal influenza and improve preparedness against future influenza pandemics an urgent priority. We have recently identified the chain-terminating broad-spectrum nucleoside analog clinical candidate 4'-fluorouridine (4'-FlU) and demonstrated oral efficacy against seasonal, pandemic, and highly pathogenic avian influenza viruses in the mouse and ferret model. Here, we have resistance-profiled 4'-FlU against a pandemic A/CA/07/2009 (H1N1) (CA09). viral adaptation yielded six independently generated escape lineages with distinct mutations that mediated moderate resistance to 4'-FlU in the genetically controlled background of recombinant CA09 (recCA09). Mutations adhered to three distinct structural clusters that are all predicted to affect the geometry of the active site of the viral RNA-dependent RNA polymerase (RdRP) complex for phosphodiester bond formation. Escape could be achieved through an individual causal mutation, a combination of mutations acting additively, or mutations functioning synergistically. Fitness of all resistant variants was impaired in cell culture, and all were attenuated in the mouse model. Oral 4'-FlU administered at lowest-efficacious (2 mg/kg) or elevated (10 mg/kg) dose overcame moderate resistance when mice were inoculated with 10 LD units of parental or resistant recCA09, demonstrated by significantly reduced virus load and complete survival. In the ferret model, invasion of the lower respiratory tract by variants representing four adaptation lineages was impaired. Resistant variants were either transmission-incompetent, or spread to untreated sentinels was fully blocked by therapeutic treatment of source animals with 4'-FlU.

Author Summary: Reduced sensitivity to FDA-approved influenza drugs is a major obstacle to effective antiviral therapy. We have previously demonstrated oral efficacy of a novel clinical candidate drug, 4'-FlU, against seasonal, pandemic, and highly pathogenic avian influenza viruses. In this study, we have determined possible routes of influenza virus escape from 4'-FlU and addressed whether resistance imposes a viral fitness penalty, affecting pathogenicity or ability to transmit. We identified three distinct clusters of mutations that lead to moderately reduced viral sensitivity to the drug. Testing of resistant variants against two chemically unrelated nucleoside analog inhibitors of influenza virus, conditionally approved favipiravir and the broad-spectrum SARS-CoV-2 drug molnupiravir, revealed cross-resistance of one cluster with favipiravir, whereas no viral escape from molnupiravir was noted. We found that the resistant variants are severely attenuated in mice, impaired in their ability to invade the lower respiratory tract and cause viral pneumonia in ferrets, and transmission-defective or compromised. We could fully mitigate lethal infection of mice with the resistant variants with standard or 5-fold elevated oral dose of 4'-FlU. These results demonstrate that partial viral escape from 4'-FlU is feasible in principle, but escape mutation clusters are unlikely to reach clinical significance or persist in circulating influenza virus strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614940PMC
http://dx.doi.org/10.1101/2023.10.20.563370DOI Listing

Publication Analysis

Top Keywords

resistant variants
20
influenza virus
16
influenza viruses
12
influenza
10
viral
8
nucleoside analog
8
clinical candidate
8
4'-flu
8
demonstrated oral
8
oral efficacy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!