Background: Retinoid acid receptor related orphan receptor α (RORα) is a nuclear receptor that along with other bioactive factors regulates cell proliferation, differentiation, and immunomodulation in vivo.

Aims: The objective of this study was to explore the function and mechanism of RORα in allergic rhinitis (AR).

Materials And Methods: Derp1 was used to construct an AR cell model in HNEpC cells, and RORα was overexpressed or silenced in the AR HNEpC cells. Next, LAD2 cells were co-cultured with the Derp1-treated HNEpC cells. Additionally, an AR mouse model was established using by OVA, and a RORα Adenovirus was delivered by nebulizing. Pathological tissue structures were evaluated by hematoxylin-eosin staining, and the levels of RORα, interleukin-33 (IL-33), and other proteins were analyzed immunohistochemistry, western blotting, and immunofluorescence staining. IL-33, IL-4, IL-5, and IL-13 levels were detected using enzyme-linked immunosorbent assay kits and cell migration was assessed by Transwell assays.

Results: Our data showed that RORα was downregulated in the nasal mucosa tissues of AR patients. Derp1 treatment could cause a downregulation of RORα, upregulation of IL-33, the induction of NLRP3 inflammasomes, and cell migration in HNEpC cells. Furthermore, RORα overexpression dramatically attenuated IL-33 levels, NLRP3 inflammasome activity, and the migration of AR HNEpC cells induced with Derp1. Moreover, RORα in AR HNEpC cells could prevent mast cell (MC) degranulation and inflammation by accelerating autophagy, RORα overexpression inhibited MC degranulation and NLRP3-induced inflammation in the AR model mice. RORα overexpression reduced IL-33 expression in nasal epithelial cells, and also suppressed MC degranulation and inflammation by promoting autophagy.

Conclusion: RORα inhibits NLRP3 inflammasome in HNEpC, and attenuated mast cells degranulation and inflammation through autophagy in AR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580702PMC
http://dx.doi.org/10.1002/iid3.1017DOI Listing

Publication Analysis

Top Keywords

hnepc cells
24
rorα overexpression
16
degranulation inflammation
16
rorα
13
cells
9
overexpression reduced
8
mast cell
8
cell degranulation
8
allergic rhinitis
8
cells rorα
8

Similar Publications

Baicalein attenuates ovalbumin-induced allergic rhinitis through the activation of nuclear receptor subfamily 4 group a member 1.

Immunol Res

January 2025

Department of Otolaryngology, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, 266033, Shandong, People's Republic of China.

Baicalein, one of the major active flavonoids found in Scutellaria baicalensis, has been revealed to exhibit potent anti-inflammatory properties in allergic airway inflammation. This study aimed to explore the role of baicalein and its relevant mechanism in the treatment of allergic rhinitis (AR). The bioinformatics tools were used to predict the targets of baicalein and AR-related genes.

View Article and Find Full Text PDF

CMPK2 promotes NLRP3 inflammasome activation via mtDNA-STING pathway in house dust mite-induced allergic rhinitis.

Clin Transl Med

January 2025

Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China.

Background: House dust mite (HDM) is the leading allergen for allergic rhinitis (AR). Although allergic sensitisation by inhaled allergens renders susceptible individuals prone to developing AR, the molecular mechanisms driving this process remain incompletely elucidated.

Objective: This study aimed to elucidate the molecular mechanisms underlying HDM-induced AR.

View Article and Find Full Text PDF

Piezo1-Induced Nasal Epithelial Barrier Dysfunction in Allergic Rhinitis.

Inflammation

January 2025

Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, 250000, Shandong, China.

This study aimed to investigate the role of Piezo1 in nasal epithelial barrier dysfunction in allergic rhinitis (AR) using both in vitro and in vivo experimental methods. A total of 79 human nasal mucosal samples were collected, including 43 from AR patients and 36 from healthy controls. Additionally, 12 BALB/c mice were used for the in vivo experiments.

View Article and Find Full Text PDF

Background: Allergic Rhinitis (AR) is an inflammatory condition characterized by nasal mucosa remodeling, driven by Immunoglobulin E (IgE). Platycodin D (PLD) exhibits a wide range of bioactive properties.

Aim: The aim of this work was to investigate the potential protective effects of PLD on AR, as well as the underlying mechanisms.

View Article and Find Full Text PDF

: Although treatments using thermal water have yielded beneficial effects in respiratory tract infections, the effects of thermal water under experimental conditions similar to those triggered by SARS-CoV-2 have yet to be evaluated. This study aimed to assess whether thermal water could interfere with the interaction between SARS-CoV-2 and host cells and influence inflammatory factors. : Human nasal epithelial primary cells (HNEpCs) were stimulated with SARS-CoV-2 spike protein in the presence or absence of thermal water or tap water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!