Phthalate esters (PAEs) are widely distributed in the environment, and this has caused serious health and safety concerns. Development of rapid and ultrasensitive identification and analysis methods for phthalate esters is urgent and highly desirable. In this work, a novel nitrogen-rich covalent organic framework (N-TTI) derived quinoline bridging covalent organic framework (N-QTTI) was fabricated and used as a solid-phase microextraction (SPME) coating for the ultrasensitive determination of phthalate esters in water samples. The physical and chemical properties of N-QTTI were investigated sufficiently. The N-QTTI-coated fiber demonstrates a superior enrichment performance than either the N-TTI-coated fiber or commercial fibers under the optimized SPME conditions. For the first time, we propose a semi-immersion strategy for the extraction of PAEs from water samples based on N-QTTI-coated SPME fibers. Combined with gas chromatography-mass spectrometry (GC-MS), the developed method N-QTTI-SPME-GC-MS exhibits a wide linear range with a satisfactory linearity ( ≥ 0.995). The limits of detection (LOD, S/N = 3) and the limits of quantification (LOQs, S/N = 10) were 0.17-1.70 and 0.57-5.60 ng L, respectively. The repeatability of the new method was examined using relative standard deviations (RSDs) between intraday and interday data, which were 0.38-7.98% and 1.22-6.60%, respectively. The spiked recoveries at three levels of 10, 100, and 1000 ng L were in the range of 90.0-106.2% with RSDs of less than 7.48%. The enrichment factors ranged from 291 to 17180. When compared to previously published works, the LODs of the newly established method were improved 5-5400 times, and the enrichment factors were increased by at least 8 times. The absorption mechanism was investigated by X-ray photoelectron spectroscopy and noncovalent interaction force analysis. The technique was successfully employed for detecting PAEs in water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.3c02859DOI Listing

Publication Analysis

Top Keywords

phthalate esters
16
water samples
16
covalent organic
12
organic framework
12
quinoline bridging
8
solid-phase microextraction
8
coating ultrasensitive
8
ultrasensitive determination
8
determination phthalate
8
esters water
8

Similar Publications

The characteristics of phthalate acid esters and bisphenol A in PM of a petrochemical city: Concentrations, compositions, and health risk assessment in Dongying.

Environ Pollut

December 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China.

Phthalate acid esters (PAEs) and bisphenol A (BPA) are recognized as common endocrine disruptors associated with various adverse effects on human health. However, limitations in existing systematic studies, particularly in air detection, have raised concerns about potential health risks from inhalation exposure. In this study, PM samples were collected in Dongying, a petrochemical city, from October 27 to December 6, 2021.

View Article and Find Full Text PDF

Association between prenatal exposure to phthalate esters and blood pressure in children aged 3-7 years: A prospective cohort study.

Ecotoxicol Environ Saf

December 2024

School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China. Electronic address:

Background: An increasing number of animal studies have indicated that exposure to phthalate esters (PAEs) may cause high blood pressure. However, population-based evidence is limited, particularly for pregnant women and young children.

Objective: To examine the correlation between prenatal exposure to phthalate ester metabolites (mPAEs) and blood pressure in preschool children.

View Article and Find Full Text PDF

Improving the reliability of phthalate esters analysis in water samples by gas chromatography-tube plasma ionization-high-resolution mass spectrometry (GC-TPI-HRMS).

Talanta

December 2024

Applied Analytical Chemistry, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany. Electronic address:

The monitoring of phthalate esters (PAEs) is challenging due to background contamination as well as the low selectivity observed when analyzing them by gas chromatography coupled to mass spectrometry (GC-MS) using electron ionization (EI). In this sense, alternative and soft ionization techniques could help to enhance the performance of the analytical determinations of PAEs in food samples. In this work, the use of a novel and soft ionization technique tube plasma ionization (TPI) has been explored to enhance the selectivity and sensitivity in the determination of PAEs in drinking water samples with GC-MS.

View Article and Find Full Text PDF

Background: The ongoing emergence and spread of drug-resistant pathogens necessitate urgent solutions. Natural products from bacterial sources are recognized as a promising source of antibiotics. This study aimed to isolate and characterize soil microorganisms from extremely hot environments and to screen their secondary metabolites for antibacterial activity.

View Article and Find Full Text PDF

Eutrophication impacts on seasonal endocrine disrupting compounds (PAE and AP) accumulation in estuarine microplankton.

Mar Pollut Bull

December 2024

Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan. Electronic address:

Endocrine-disrupting compounds (EDCs), such as phthalate esters (PAE) and alkyl phenols (AP) in marine primary trophic levels, are still underexplored. We present their seasonal changes and the potential impacts of environmental factors during Summer (2022), Autumn (2022), and Spring (2023) in a polluted environment. Plankton samples (55-1000 μm) were collected in duplicate, processed for PAE and AP solvent extraction, and analyzed using Gas Chromatography-Mass Spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!