Large DNA viruses in the phylum Nucleocytoviricota, sometimes referred to as "giant viruses" owing to their large genomes and virions, have been the subject of burgeoning interest over the last decade. Here, we describe recently adopted taxonomic updates for giant viruses within the order Imitervirales. The families Allomimiviridae, Mesomimiviridae, and Schizomimiviridae have been created to accommodate the increasing diversity of mimivirus relatives that have sometimes been referred to in the literature as "extended Mimiviridae". In addition, the subfamilies Aliimimivirinae, Megamimivirinae, and Klosneuvirinae have been established to refer to subgroups of the Mimiviridae. Binomial names have also been adopted for all recognized species in the order. For example, Acanthamoeba polyphaga mimivirus is now classified in the species Mimivirus bradfordmassiliense.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230039PMC
http://dx.doi.org/10.1007/s00705-023-05906-3DOI Listing

Publication Analysis

Top Keywords

giant viruses
8
viruses order
8
order imitervirales
8
phylum nucleocytoviricota
8
taxonomic update
4
update giant
4
imitervirales phylum
4
nucleocytoviricota large
4
large dna
4
dna viruses
4

Similar Publications

Novel High-Quality Amoeba Genomes Reveal Widespread Codon Usage Mismatch Between Giant Viruses and Their Hosts.

Genome Biol Evol

January 2025

Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria.

The need for high-quality protist genomes has prevented in-depth computational and experimental studies of giant virus-host interactions. In addition, our current knowledge of host range is highly biased due to the few hosts used to isolate novel giant viruses. This study presents 6 high-quality amoeba genomes from known and potential giant virus hosts belonging to 2 distinct eukaryotic clades: Amoebozoa and Discoba.

View Article and Find Full Text PDF

The HNH endonuclease domain of the giant virus MutS7 specifically binds to branched DNA structures with single-stranded regions.

DNA Repair (Amst)

December 2024

Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan; Agricultural Science, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan. Electronic address:

Most giant viruses including Mimiviridae family build large viral factories within the host cytoplasms. These giant viruses are presumed to possess specific genes that enable the rapid and massive replication of their large double-stranded DNA genomes within viral factories. It has been revealed that a functionally uncharacterized protein, MutS7, is expressed during the operational phase of the viral factory.

View Article and Find Full Text PDF

Revisiting the concept of giant viruses.

Microbes Infect

December 2024

Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, 31270-901, Brazil. Electronic address:

Giant viruses have fascinated the scientific community due to their immense particles and extensive genomes. A significant surge of interest in the field has been observed over the past 20 years following the discovery of mimiviruses, the first amoeba-infecting viruses described. However, with the discovery of new amoeba viruses and those from other protists, the concept of "giant viruses" has become increasingly controversial in the scientific literature.

View Article and Find Full Text PDF

Giant viruses are crucial for marine ecosystem dynamics because they regulate microeukaryotic community structure, accelerate carbon and nutrient cycles, and drive the evolution of their hosts through co-evolutionary processes. Previously reported long-term observations revealed that these viruses display seasonal fluctuations in abundance. However, the underlying genetic mechanisms driving such dynamics of these viruses remain largely unknown.

View Article and Find Full Text PDF

Carbohydrate-mediated interactions between chloroviruses and the immune system.

Commun Biol

December 2024

Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Understanding the molecular mechanisms which drive and modulate host-pathogen interactions are essential when designing effective therapeutic and diagnostic approaches aimed at controlling infectious diseases. Certain large and giant viruses have recently been discovered as components of the human virome, yet little is known about their interactions with the host immune system. We have dissected the role of viral N-linked glycans during the interaction between the glycoproteins from six chloroviruses (belonging to three chlorovirus classes: NC64A, SAG, and Osy viruses) and the representative carbohydrate-binding receptors of the innate immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!