AI Article Synopsis

  • Researchers studied lipid levels and cardiovascular disease (CVD) risk among Greenlanders to identify genetic variants linked to these traits.
  • They discovered 11 significant genetic loci affecting lipid traits, including a new variant near the PCSK9 gene that contributes to lower LDL and total cholesterol levels.
  • The findings highlight that while some genetic factors are shared with Europeans, the overall genetic makeup in Greenlanders shows a unique architecture, with fewer variants influencing lipid levels.

Article Abstract

Perturbation of lipid homoeostasis is a major risk factor for cardiovascular disease (CVD), the leading cause of death worldwide. We aimed to identify genetic variants affecting lipid levels, and thereby risk of CVD, in Greenlanders. Genome-wide association studies (GWAS) of six blood lipids, triglycerides, LDL-cholesterol, HDL-cholesterol, total cholesterol, as well as apolipoproteins A1 and B, were performed in up to 4473 Greenlanders. For genome-wide significant variants, we also tested for associations with additional traits, including CVD events. We identified 11 genome-wide significant loci associated with lipid traits. Most of these loci were already known in Europeans, however, we found a potential causal variant near PCSK9 (rs12117661), which was independent of the known PCSK9 loss-of-function variant (rs11491147). rs12117661 was associated with lower LDL-cholesterol (β(SE) = -0.22 (0.03), p = 6.5 × 10) and total cholesterol (-0.17 (0.03), p = 1.1 × 10) in the Greenlandic study population. Similar associations were observed in Europeans from the UK Biobank, where the variant was also associated with a lower risk of CVD outcomes. Moreover, rs12117661 was a top eQTL for PCSK9 across tissues in European data from the GTEx portal, and was located in a predicted regulatory element, supporting a possible causal impact on PCSK9 expression. Combined, the 11 GWAS signals explained up to 16.3% of the variance of the lipid traits. This suggests that the genetic architecture of lipid levels in Greenlanders is different from Europeans, with fewer variants explaining the variance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853193PMC
http://dx.doi.org/10.1038/s41431-023-01485-8DOI Listing

Publication Analysis

Top Keywords

independent pcsk9
8
lipid levels
8
risk cvd
8
greenlanders genome-wide
8
total cholesterol
8
lipid traits
8
associated lower
8
pcsk9
5
lipid
5
gwas lipids
4

Similar Publications

The pleiotropic effects of PCSK9 in cardiovascular diseases beyond cholesterol metabolism.

Acta Physiol (Oxf)

February 2025

Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.

Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality globally, with elevated low-density lipoprotein cholesterol (LDL-C) levels being a major risk factor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in regulating LDL-C levels by promoting the degradation of hepatic low-density lipoprotein receptors (LDLR) responsible for clearing LDL-C from the circulation. PCSK9 inhibitors are novel lipid-modifying agents that have demonstrated remarkable efficacy in reducing plasma LDL-C levels and decreasing the incidence of CVD.

View Article and Find Full Text PDF

Background: Erectile dysfunction is a condition with a rapidly increasing prevalence globally with a strong correlation to the increase in obesity and cardiovascular disease rates.

Aim: The aim of the current study is to investigate the potential role of tubacin, a histone deacetylase 6 (HDAC6) inhibitor, in restoring erectile function in a hypercholesterolemia-induced endothelial dysfunction model.

Methods: Thirty-nine male C57Bl/6 J mice were divided into 3 groups.

View Article and Find Full Text PDF

Pleiotropic Effects of PCSK9 Inhibitors on Cardio-Cerebrovascular Diseases.

Biomedicines

November 2024

Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.

Cardiovascular disease (CVD) and ischemic stroke (IS) are the primary causes of mortality worldwide. Hypercholesterolemia has been recognized as an independent risk factor for CVD and IS. Numerous clinical trials have unequivocally demonstrated that reducing levels of low-density lipoprotein cholesterol (LDL-C) significantly mitigates the risk of both cardiac and cerebral vascular events, thereby enhancing patient prognosis.

View Article and Find Full Text PDF

Lipid metabolism disorders are frequently noted in atopic dermatitis (AD) patients, prompting the long-term use of lipid-lowering drugs. However, the causal effects of circulating lipids and different lipid-lowering drugs on the risk of AD are not thoroughly understood. Using publicly available genome-wide association studies (GWAS) summary data from two different cohorts, a series of Mendelian randomization (MR) analyses were conducted to explore the causal effects of genetically proxied circulating lipids and lipid-lowering drugs on the risk of AD.

View Article and Find Full Text PDF

Advances in the pharmacological management of hyperlipidemia through the use of combination therapies.

Expert Opin Pharmacother

December 2024

Department of Metabolic Medicine/Chemical Pathology Guy's, St Thomas' Hospitals, London, UK.

Introduction: Lipid-lowering therapies are well established for the treatment of cardiovascular disease (CVD). Historically monotherapy studies have been performed, but the introduction of statins has led to these drugs being recognized as baseline therapies and to the investigation of combination therapy of both older and newer medications with them.

Areas Covered: Surrogate marker studies have shown additive effects on LDL-C, triglycerides and HDL-C of combination therapies with statins and these have extended to lipoprotein (a).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!