The light absorption process is a key factor in improving the performance of perovskite solar cells (PSCs). Using arrays of metal nanostructures on semiconductors such as perovskite (CHNHPbI), the amount of light absorption in these layers is significantly increased. Metal nanostructures have been considered for their ability to excite plasmons (collective oscillations of free electrons). Noble metal nanoparticles placed inside solar cells, by increasing the scattering of the incident light, effectively increase the optical absorption inside PSCs; this in turn increases the electric current generated in the photovoltaic device. In this work, by calculating the cross-sectional area of dispersion and absorption on gold (Au) nanoparticles, the effects of the position of nanoparticles in the active layer (AL) and their morphology on the increase of absorption within the PSC are investigated. The optimal position of the plasmonic nanoparticle was obtained in the middle of the AL using a three-dimensional simulation method. Then, three different morphologies of nano-sphere, nano-star and nano-cubes were investigated, where the short-circuit currents (J) for these three nanostructures were obtained equal to 19.01, 18.66 and 20.03 mA/cm, respectively. In our study, the best morphology of the nanostructure according to the J value was related to the nano-cube, in which the device power conversion efficiency was equal to 16.20%, which is about 15% better than the PSC with the planar architecture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616107 | PMC |
http://dx.doi.org/10.1038/s41598-023-46098-9 | DOI Listing |
Sci Rep
January 2025
College of Integrative Studies, Abdullah Al Salem University, Khaldiya, Kuwait.
In this study, we explore the photovoltaic performance of an innovative high efficiency heterostructure utilizing the quaternary semiconductor CuFeSnSe (CFTSe). This material features a kesterite symmetrical structure and is distinguished by its non-toxic nature and abundant presence in the earth's crust. Utilizing the SCAPS simulator, we explore various electrical specifications such as short circuit current (J), open circuit voltage (V), the fill factor (FF), and power conversion efficiency (PCE) were explored at a large range of thicknesses, and the acceptor carrier concentration doping (N).
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.
During the process of developing smart chiroptical luminophores, small chiral organic dyes have emerged as candidates of utmost importance. In this regard, the chiral variants of boron dipyrromethene (BODIPY) serve as suitable molecules owing to their excellent photophysical properties such as high fluorescence quantum yields, narrow emission bandwidths with high peak intensities, high photo and chemical stability, and higher molar extinction coefficients. Thus, the last decade observed an influx of research from various research groups for the induction of chirality in originally achiral BODIPY.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China.
Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring TCOs. However, no promising industrial solution has been obtained yet.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Huaqiao University College of Materials Science and Engineering, No.668 Jimei Avenue, Xiamen, Fujian, 361021, Xiamen, CHINA.
The advancement of tin-based perovskite solar cells (TPSCs) has been severely hindered by the poor controllability of perovskite crystal growth and the energy level mismatch between the perovskite and fullerene-based electron transport layer (ETL). Here, we synthesized three cis-configured pyridyl-substituted fulleropyrrolidines (PPF), specifically 2-pyridyl (PPF2), 3-pyridyl (PPF3), and 4-pyridyl (PPF4), and utilized them as precursor additives to regulate the crystallization kinetics during film formation. The spatial distance between the two pyridine groups in PPF2, PPF3, and PPF4 increases sequentially, enabling PPF4 to interact with more perovskite colloidal particles.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
EPFL: Ecole Polytechnique Federale de Lausanne, Department of Chemistry, Rue de Industries 17, 1050, Sion, SWITZERLAND.
Li-TFSI/t-BP is the most widely utilized p-dopant for hole-transporting materials (HTMs) in state-of-the-art perovskite solar cells (PSCs). However, its nonuniformity of doping, along with the hygroscopicity and migration of dopants, results in the devices that exhibit limited stability and performance. This study reports the use of a spherical anion of the p-dopant, regulated by its radius and shape, as an alternative to the linear TFSI- anion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!