The rising interest in carbon dots (c-dots) is driven by their remarkable potential in the field of biomedical applications. This is due to their distinctive and adjustable photoluminescence characteristics, outstanding physicochemical properties, excellent photostability, and biocompatibility. Herein, carbon dots were successfully produced via the heat synthesis method and characterization for physical and chemical properties using UV-Vis spectrophotometer, photoluminescence spectroscopy, Fourier Transform Infrared and Raman spectroscopy, Energy-dispersive X-ray analysis, and quantum yield. The resulting carbon dots exhibited a distinct blue fluorescence upon exposure to ultraviolet radiation with a 366 nm wavelength. The photoluminescence spectrum of carbon dots displayed a fluorescence peak around 470 nm when excited with a 325 nm wavelength. The synthesized carbon dots demonstrated thermal stability and maintained photoluminescence intensity under different pH conditions, including neutral and alkaline mediums, and good salt resistance ability. Raman spectroscopy confirmed the presence of structural defects within the carbon dots, which are associated with the presence of hybrid groups on their surface. Fourier-transform infrared analysis detected various carbon-bonded, nitrogen-bonded, and oxygen-bonded units. The quantum yield was around 8.9%. These findings from our experiments indicate that the manufactured carbon dots possess substantial promise for a wide range of applications within the biotechnology field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616078 | PMC |
http://dx.doi.org/10.1038/s41598-023-46084-1 | DOI Listing |
ACS Omega
January 2025
Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.
View Article and Find Full Text PDFBiomater Sci
January 2025
Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
Schwann cells (SCs) can potentially transform into the repair-related cell phenotype after injury, which can promote nerve repair. Ferroptosis occurs in the SCs of injured tissues, causing damage to the SCs and exacerbating nerve injury. Targeting ferroptosis in SCs is a promising therapeutic strategy for effective repair; however, research on ferroptosis in the peripheral nervous system remains limited.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 PR China. Electronic address:
Luminescent solar concentrators (LSCs) are large scale sunlight collector and can be used for building-integrated photovoltaics (BIPV). Achieving high-performance LSCs requires fluorophores with broad absorption, high quantum yield and a large Stokes shift. Nevertheless, conventional high-efficiency LSCs typically rely on heavy metal-based quantum dots as fluorophores.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain; Catalan Institution for Research and Advanced Studies (ICREA) Passeig de Lluís Companys, 23, Barcelona, 08010, Spain. Electronic address:
Quantum dots (QDs) are the smallest nanomaterials (2-10 nm), with unique optical and electronic properties. Thanks to these properties, QDs have been standing during the last years as signal tags for different applications, including bioimaging, fluorescent biosensors and electrochemical assays. In this review, we explore the current state-of-the art on these nanomaterials, differentiating them between semiconductor and carbon-based QDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!