Both solar wind and ionospheric sources contribute to the magnetotail plasma sheet, but how their contribution changes during a geomagnetic storm is an open question. The source is critical because the plasma sheet properties control the enhancement and decay rate of the ring current, the main cause of the geomagnetic field perturbations that define a geomagnetic storm. Here we use the solar wind composition to track the source and show that the plasma sheet source changes from predominantly solar wind to predominantly ionospheric as a storm develops. Additionally, we find that the ionospheric plasma during the storm main phase is initially dominated by singly ionized hydrogen (H), likely from the polar wind, a low energy outflow from the polar cap, and then transitions to the accelerated outflow from the dayside and nightside auroral regions, identified by singly ionized oxygen (O). These results reveal how the access to the magnetotail of the different sources can change quickly, impacting the storm development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616164PMC
http://dx.doi.org/10.1038/s41467-023-41735-3DOI Listing

Publication Analysis

Top Keywords

plasma sheet
16
geomagnetic storm
12
solar wind
12
source plasma
8
storm solar
8
wind ionospheric
8
singly ionized
8
storm
6
plasma
5
variable source
4

Similar Publications

With the development of diamond technology, its application in the field of electronics has become a new research hotspot. Hydrogen-terminated diamond has the electrical properties of P-type conduction due to the formation of two-dimensional hole gas (2DHG) on its surface. However, due to various scattering mechanisms on the surface, its carrier mobility is limited to 50-200 cm/(Vs).

View Article and Find Full Text PDF

Breaking the Trade-Off Between Electrical Conductivity and Mechanical Strength in Bulk Graphite Using Metal-Organic Framework-Derived Precursors.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

High-performance bulk graphite (HPBG) that simultaneously integrates superior electrical conductivity and excellent strength is in high demand, yet it remains critical and challenging. Herein a novel approach is introduced utilizing MOF-derived nanoporous metal/carbon composites as precursors to circumvent this traditional trade-off. The resulting bulk graphite, composed of densely packed multilayered graphene sheets functionalized with diverse cobalt forms (nanoparticles, single atoms, and clusters), exhibits unprecedented electrical conductivity in all directions (in-plane: 7311 S cm⁻¹, out-of-plane: 5541 S cm⁻¹) and excellent mechanical strength (flexural: 101.

View Article and Find Full Text PDF

The antimalarial hydroxychloroquine (HCQ) has considered for the treatment of systemic lupus erythematosus. Moreover, HCQ has been used as a drug to treat Coronavirus disease (COVID-19). In this work, nitrogen doped porous reduced graphene oxide (NprGO) has been prepared via environmentally friendly process using Fummaria Parviflora extract.

View Article and Find Full Text PDF

Endoplasmic Reticulum Calcium Signaling in Hippocampal Neurons.

Biomolecules

December 2024

Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, NAS of Ukraine, 01024 Kyiv, Ukraine.

The endoplasmic reticulum (ER) is a key organelle in cellular homeostasis, regulating calcium levels and coordinating protein synthesis and folding. In neurons, the ER forms interconnected sheets and tubules that facilitate the propagation of calcium-based signals. Calcium plays a central role in the modulation and regulation of numerous functions in excitable cells.

View Article and Find Full Text PDF

Aims: Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!